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ABSTRACT 
A new  model is presented  for  the  genetic  structure  among a collection of  island  populations,  with 

fluctuating  population sizes and  continuous  overlapping  generations,  using a stochastic  birth,  death  and 
immigration (BDI) process.  Immigrants enter each  island  from a large  mainland  population,  with 
constant  gene  frequencies,  according to a Poisson  process.  The  average  probability o f  identity by descent 
(IBD) for two haploid  individuals  randomly  selected  from  an  island  population is fo = ( 4fi + A) / (4 + 
A) ,  where f, is the  probability of IBD for two randomly  selected  immigrants, A is the  birth-rate  for  each 
individual,  and 4 is the  arrival  rate of immigrants  into  each  island.  The  value  ofJo is independent of 
the  death  process, time and N. The  expected  level  of  genetic  differentiation  among  island  populations 
is FST = (1 - l/n)A/(d + A), where n is the  total  number o f  islands  receiving immigrants. Because J ,  
and FsT are  independent o f  the  death  process,  for a BDI model,  the  population  genetic structure for  
several general  demographic  situations may be  examined  using  our  equations.  These  include  stochastic 
exponential,  or  logistic  (regulated by death  rate)  growth  within  islands, or a “source-sink”  population 
structure. Because the  expected  values of both fo and FST are  independent o f  time,  these  are  achieved 
immediately,  for a BDI model, with  no  need  to  assume the  island  populations  are at genetic  equilibrium. 

M ANYplant and animal  populations in nature  are 
highly fragmented (LARSON et al. 1984; LEBERG 

1991; FRANCE et al. 1992). A common  pattern of popula- 
tion subdivision involves one  or more large “mainland” 
populations surrounded by numerous smaller “island” 
populations. HANSKI (1994) has termed such popula- 
tion complexes “island-mainland” metapopulations. 
The islands, in this case, may be  patches of a critical 
habitat type, hosts for  a parasite, or  other disjunct re- 
sources, as  well  as actual geographical islands. Popula- 
tions inhabiting islands tend to be small in size and  are 
frequently isolated from other populations,  exchanging 
only a limited number of migrants. Because small, semi- 
isolated populations are  thought to play an  important 
role in  the evolution of  new species and in the adapta- 
tion of populations to new environments (WRIGHT 
1937),  the  genetic  structure of populations occupying 
island habitats should be of special interest to evolution- 
ary biologists. 

The ecological and demographic  features of island- 
mainland  population complexes have been extensively 
studied  (see MACARTHUR and WILSON 1969; reviewed 
by HANSKI 1994),  but  the  genetic  outcomes  for  a  popu- 
lation structure of  this form  are less  well understood. 
WRIGHT (1931)  considered  the  genetic  structure of a 
large collection of island populations of constant size 
N, with discrete  nonoverlapping  generations, and with 
a fraction m of the individuals on each island replaced 
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by migrants from a source with constant  gene  frequen- 
cies in each generation. The theoretical properties of 
Wright’s island model have been well studied and  an 
approximate  equilibrium  genetic  structure may be ob- 
tained by diffusion theory (see CROW and KIMURA 
1970). 

Wright’s island model makes several quite restrictive 
assumptions about  the  demographic  properties of  is- 
land  populations, which often may not be satisfied for 
species in nature.  The model implicitly  assumes that 
(1) the  populations have discrete nonoverlapping  gen- 
erations, (2) individual populations do  not fluctuate in 
size due to stochastic variation in the total number of 
progeny in  each  generation and  (3)  no chance fluctua- 
tions occur in the  number of immigrants in each gener- 
ation (migration is deterministic). The second assump 
tion may be stated mathematically as 

N 

N =  c x, (1) 
t= 1 

where x is the  number of offspring for  the ith individ- 
ual, Nis as defined above, and  the X, are multinomial 
random variables with unit means. The assumption that 
population size  is constant is necessary to obtain  an 
approximate solution for  the  gene  frequency distribu- 
tion under a Fisher-Wright demographic  model using 
diffusion theory (FELLER 1951). Assumption 3 may gen- 
erally be relaxed with limited effect (NAGYLAKI 1979). 
Thus, Wright’s island model  does not allow for  the 
chance variations in size,  over time and space, that nor- 
mally occur  among  populations due to sampling vari- 
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ance in the total number of offspring in each genera- 
tion, even if the  demographic parameters are constant. 

Much recent  theory has focused on  the effects of 
modifying particular assumptions of the  standard 
Fisher-Wright (FISHER 1930; WRIGHT 1931) genetic 
model (which Wright’s island model is based upon) 
to take into account  a number of demographic influ- 
ences  including  population size bottlenecks (NEI et al. 
1975; GOODNIGHT 1987; WATTERSON 1989),  temporal 
fluctuations in population size (WRIGHT 1931; WHIT- 
LOCK 1992), asymmetrical migration rates (BODMER 
and CAVALLI-SFORZA 1968), population age structure 
(CHARLESWORTH 1980) and population  extinction and 
founding events (SELANDER 1975; SLATIUN 1977; MAR- 
UYAMA and K ” R A  1980; WADE and MCCAULEY 1988; 
EWENS 1989; WHITLOCK and MCCAULEY 1990; GILPIN 
1991; LANDE 1992). As noted by MORAN (1962; p. 2), 
however, “the combined result (of two or  more  popu- 
lation features)  need not be such that  it can be easily 
guessed from  the  separate results.” 

It is important  then to investigate the genetic out- 
comes for models that combine several demographic 
factors, in addition to evaluating their effects indepen- 
dently. One way in which the genetic effects  of  various 
demographic influences may be  treated simultaneously 
in modeling island-mainland populations is to investi- 
gate the genetic properties of an alternative demo- 
graphic model to Wright’s. In this paper, we present  a 
stochastic model of the genetic structure for a collec- 
tion of populations occupying island habitats, with  im- 
migrants arriving from a large mainland population. 
The populations are assumed to be haploid with contin- 
uous overlapping generations. We use a  birth,  death 
and immigration (BDI) process to investigate the ge- 
netic structure of an island-mainland population com- 
plex of this form. To our knowledge, this is the first 
model of the genetic structure for a  continuous genera- 
tion species with population subdivision and migration. 
The results are  presented in terms of the average proba- 
bility  of identity by descent (IBD; MALECOT 1948) for 
random pairs of alleles within, and  among island popu- 
lations. We contrast the  expected level of genetic differ- 
entiation  among populations, in terms of FST (WRIGHT 
1951),  under  a continuous-generation BDI model, with 
predictions based on WRIGHT’S (1931) discrete-genera- 
tion island model. 

ANALWIC THEORY 

Consider a collection of populations of a species, 
each inhabiting one of a large number of disjoint habi- 
tat patches. All patches are of equal quality so that  the 
birth and death rates for the individuals in each patch 
are  equal  among patches. Individuals are haploid and 
reproduce by asexual binary fission. The  number of 
individuals inhabiting each patch fluctuates over time 

due to mortality, reproduction  and immigration from 
a large external source population. Each individual has 
a  constant expected rate of reproduction X, and  a con- 
stant probability of death p, so that  the transition proba- 
bilities for a  population of  size N to size N + 1 or N - 
1,  due to  a  birth or a  death,  are linearly proportional 
to N. 

Migrants from an external source population enter 
each habitat patch according to a Poisson process with 
time-homogeneous parameter 4. The expected num- 
ber of immigrants per  unit time 4 is assumed to be 
independent of N, the local population size  of  any par- 
ticular island. This model describes the dynamics of 
island populations, under a fairly general set of condi- 
tions, provided the mainland populations are large and 
relatively stable, and act as a  continuous source of  immi- 
grants. This demographic model is the well-known lin- 
ear BDI process and may be represented as a  continu- 
ous-time ergodic Markov chain with time-homogeneous 
transition rates. 

The linear BDI process: Consider a haploid popula- 
tion in  which individuals give birth  at  a rate X and die 
at  a rate p, and into which immigrants arrive at  a rate 
4. All three events are assumed to occur in a stochastic 
manner. During a small interval of time At, the proba- 
bility  of a single birth in a  population of  size N is 

XNAt, (2) 

the probability of a single death is, 

pNAt, ( 3 )  

and the probability of a single immigrant arrival is, 

+At. (4) 

The probability of more  than one event during  an  inter- 
val  of length At is of order o(At) and may be neglected. 
This is the classical formulation of the linear BDI pro- 
cess  (reviewed in RENSHAW 1991; pp. 41-44). 

KENDALL (1948, 1949) obtained  a  general solution 
for  the probability generating function (p.g.f) of popu- 
lation size for a linear BDI process. We focus on the 
outcomes for the initial condition N(0)  = 0. In this 
case, the p.g.f. of N (given that X f p )  is 

and for the case X = p is 

If p < X, the result is stochastic exponential population 
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growth on each island (with immigration) and a steady- 
state distribution of population sizes does  not exist. The 
expectation of N is then  a  function of t and is  given by 

and  the variance of N at time t is  given by 

Thus,  both  the mean and the variance of N increase 
over time when the  birth  rate exceeds the  death rate. 
If p > X, a steady-state population size distribution is 
reached  and  the probability mass function  for  the distri- 
bution may be obtained from Kendall’s solution by tak- 
ing the limit of the p.g.f.  as  time approaches infinity. 
The steady-state population size  is then observed to fol- 
low a negative binomial distribution 

with expectation, 

and variance, 

Var [Nl = 4 P  
( p  - A ) 2  ’ 

This second case provides a model of a “source-sink’’ 
population  structure in  which island populations are 
maintained by immigration, which compensates for  a 
net loss of individuals in the island populations due to 
mortality. 

If p = A, so that  the  death rate exactly balances the 
birth  rate,  the expectation of N is a linearly increasing 
function of t and is  given  by, 

E[NI tl = 44 (12) 

and  the variance is  given  by, 

Var [NI t ]  = t(4 + At ) .  (13) 

In this case, the distribution of population sizes  ap- 
proaches  a Poisson distribution as A approaches zero. 
The above results show that  the BDI process may pro- 
duce  a variety  of population size distributions, and 
model  a  number of different ecological situations, de- 
pending  on  the values  of the  demographic parameters. 

Identity by descent: For a  haploid species, with over- 
lapping  generations in continuous time, consider a sin- 
gle genetic locus with  selectively neutral alleles and a 
region composed of a large number of habitat patches 

whose population dynamics  follow the BDI process out- 
lined above. It is assumed, for simplicity,  in our initial 
development of the model, that  the probability of  IBD 
among migrants is  always zero. Each migrant into  a 
population  then  represents  a  unique allele type, and 
two alleles may be IBD only  in the case that one is 
descended from the  other  or  both  are  descended from 
a common ancestor. This assumption may be relaxed 
to allow for any pattern of genetic structure in the main- 
land  population without any  difficulty and  the  general 
case is treated in the APPENDIX. Mutation is assumed to 
occur  at  a very  low rate within island populations, by 
comparison with immigration, and to  follow an infinite- 
allele model ( ~ M U R A  and CROW 1964) so that its  effects 
are identical to those of immigration (with no IBD 
among  immigrants),  but  orders of magnitude smaller 
and may be neglected. 

We  now consider the probability that two alleles ran- 
domly  drawn from a single population  are identical 
by descent (IBD; MALECOT 1948) and will denote this 
probability by so, following MARUYAMA (1970). For a 
moderately large number of islands (greater  than - lo), 
this probability is equal to WRIGHT’S (1951) measure of 
genetic differentiation FST (see discussion below). The 
probability that two random alleles from a single island 
population are IBD  is given by 

where n, is the  number of alleles  of  type i in the popula- 
tion, Nis  the total number of alleles (haploid individu- 
als) in the island population and k is the  number  of 
unique allele types. 

To determine fo for populations under this model, 
it is useful to first derive the size distribution of the 
families  of unique allele types  in the  population  at time 
t. We follow KARLIN and MACGREGOR (1967) and KEN- 
DALL (1975) in considering the  random variables, 

E d 4 ,  h ( 0 ,  . . . E d 4 ,  (15) 

where Et(t) is the  number of  families  of unique allele 
types that  contain i members at time t. Obviously it must 
be the case that 

N 

N(t) = c iEdt), (16) 
2= 1 

where N( t )  is the total number of  alleles (haploid indi- 
viduals)  in the  population at time t. In this analysis, we 
will be interested in the behavior off:, the conditional 
probability of  IBD for two alleles  drawn from an island 
population of size N. The expectation (E) for the condi- 
tional probability of  IBD ut), given N, is related to the 
distribution of the <,( t )  in the following way: 
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For our model, with time-homogeneous 4, T A V ~  
(1989) obtained  a solution for the expectation of ti( t )  , 
conditional on N, if the time interval is chosen so that 
A = 1. In this case, the model has  only two parameters, 
p and 4. The conditional distribution of the t j (  t) (taken 
from T A V ~ )  is then 

where + ( N )  = 4(4 + 1). . .(+ + N - 1). Substituting 
equation  (18)  into  equation (17) above, equation (17) 
reduces to 

which is independent of N, t and p. Equation (19) is 
also the  unconditional expectation of fa.  Because A and 
4 are  both scaled by t, we  may reparameterize (19) as 
a  function of 4 and A to obtain, for general A, 

Thus,  the  expected probability of  IBD within an island 
population of  size N depends only on the  birth rate 
and the  expected  number of migrants if there is no 
IBD among migrants. If the probability of  IBD among 
migrants, denoted by f l ,  is greater  than zero, a more 
general equation, for which the above result (20) is a 
limiting case, may be obtained by a direct inductive 
proof (see APPENDIX). The general form of the  equation 
is 

which depends  on  the  expected  number of migrants 
and the  birth  rate, as  well  as fi , the probability of  IBD 
among migrants. 

Genetic  differentiation among  populations: A useful 
measure of the  degree of genetic differentiation among 
populations, originally proposed for a two-allele model 
by WRIGHT (1951), is the ratio of the observed variance 
in gene frequency among disjunct populations to that 
expected under panmixia. This is equivalent to the cor- 
relation between random alleles from the same popula- 
tion, relative to that between random alleles taken from 
the entire collection of populations. For an arbitrary 
number of  alleles, NEI (1973) extended this measure 
by defining it in terms of the probabilities of identity 
by descent of alleles.  His measure (taken from SLATKIN 
and BARTON 1989) may be represented as 

over, the  entire collection of populations (f14 + A ) /  
(4  + A). For the BDI demographic  model, fa is given 
by as  shown  above (equation 21). The value off for a 
BDI process is 

where n is the total number of islands receiving  immi- 
grants. This result follows from the observation that  the 
collection of islands  as a whole  behaves  as a single large 
island  receiving an average of immigrants in unit 
time. For a collection of n islands, with f l  < 1, FST is 
then given by 

As the  number of islands n becomes large, it is clear 
that 1 - l / n  approaches one, so that FST approaches 
A/(+  + A).  The average  level of genetic differentiation 
among island populations is then  independent of N, t ,  

Indirect  estimates of gene flow: In studying the ge- 
netic structure of subdivided populations in nature, em- 
piricists  have made extensive  use of the approximate 
(diploid) equilibrium result for the average genetic dif- 
ferentiation, as measured by FST (WRIGHT 1951),  under 
a discrete-generation island model, 

p and f l .  

where N is the  population size and m is the fraction of 
individuals in each population replaced by migrants in 
each generation. This result has been used to estimate 
gene flow  in terms of the composite parameter Nm (the 
number of migrants per  generation) from genetic esti- 
mates of F3T (LEWONTIN 1974;  SLATKIN and BARTON 
1989;  reviewed by SLATKIN 1994) using the estimator, 

An estimator of the joint parameter +,'A, using a ge- 
netic estimate of FST,  may be derived for a BDI model 
of a haploid species  with continuous overlapping gener- 
ations, in a similar manner to obtain 

""(I 4 1  -;) - 1. 
A FST 

If the  birth rate A is known, one can then estimate the 
number of migrants, per  unit time, using the equation, 

where fa is as defined above, andfis the probability of 
IBD for two random alleles selected from,  and averaged 
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For n greater  than -10, equation (28) is  well approxi- 
mated by 

This estimator is  very similar in form to the one based 
on Wright’s model,  except  that it is scaled by a factor 
A, rather  than  the  constant y4. Both estimators require 
that  the probability of  IBD among migrants is constant. 

Comparison with Wright’s  island  model: At genetic 
equilibrium,  the  expected value  of FST (for  a  haploid 
species) under WRIGHT’S (1931) island model is ap- 
proximately 

1 
2Nm + 1 

FST 

Because the BDI process involves continuous, overlap 
ping  generations, we shall first determine  the equiva- 
lent of a  generation for island populations regulated 
according to a BDI process and  then  equate this to a 
generation in Wright’s model. Consider an island popu- 
lation that increases by a stochastic birth and immigra- 
tion process with rates A and 4, respectively.  Initially 
the island population is  of  size zero, and it is allowed 
to increase to size N. 

To compare our model with  Wright’s, we define a 
generation for the continuous-time BDI process to be 
an interval during which Nindividuals arise, by birth or 
immigration, followed by Ndeaths; each death selects 
at  random from the individuals alive; the process so 
described is not a BDI process, but  the average IBD 
remains (+fl + A ) / ( +  + A) (see APPENDIX). We then 
consider the average number of migrants that remain 
in the  population following an interval with N arrivals 
and  N  deaths. The expected  number of migrants after 
N arrivals is the sum of probabilities of a  migrant arriv- 
ing  at  population size N + k, where 0 ZG k 5 N - 1; 
after N  deaths,  the  expected  number of migrants is 
reduced by half, and if we denote  the  remaining  num- 
ber of migrants by M, we obtain 

which may be approximated using 

1 r = N - l  + 
2 I=, (N + r ) A  + + E[w = -  d r  

If N B +/A and N 9 1, then this is approximately 

E[n/rl = --. 9 In 2 
A 2  (33) 

Substituting this value for Nm in  Wright’s model we 
have 

A 
+ l n 2 + A ’  FST = (34) 

For a moderately large number of islands developing 
under a BDI process (see above),  the  expected value 
of FsT is simply A/ (+ + A) .  Thus, by considering only 
the  number of  surviving migrants in each generation, 
and applying Wright’s equation, we would underesti- 
mate the effect of migration on FST by a factor of 
log, 2. In Wright’s discrete-generation island model, all 
the  parents  die;  the offspring generation has greater 
IBD than the  parents,  on average. In the BDI model, 
some of the  parents survive, and therefore the IBD  is 
lower, on average. As a result, the estimated effect of 
immigration on IBD is smaller for Wright’s model. 

Relation  between  demographic  structure  andfo: Be- 
cause equation (21) for fo, under a BDI demographic 
model,  depends only on  the ratio +:A and  the  constant 
fi and is independent of p, Nand t, it may be  applied 
to a wider range of demographic structures than those 
considered in the original BDI model. Three conditions 
are  required for equation (21) to be valid: (1)  the rela- 
tive rates of birth per individual and immigration re- 
main  in constant  proportion +:A; (2) every individual 
in a  population has an  equal probability of dying and 
an equal probability of  giving birth, whenever a birth 
or  death occurs ( i . e . ,  an individual’s probability of  dying 
or giving birth does not  depend  on features such as age 
or allele type) and (3) the probability of  IBD among 
migrants (fi) is constant. In ecological terms, the  rate 
of immigration and  the individual birth  rate must each 
be  independent of the local population density, or they 
must vary jointly with  density  in a  constant ratio; births 
and  deaths must occur at  random and the mainland 
population must be large enough  that  the  gene fre- 
quencies among migrants do not  change  during the 
time when the island populations are developing. 

A  range of demographic structures may be investi- 
gated within this framework: ( 1 )  if A > p, the BDI 
process provides a model of exponentially growing pop- 
ulations (with immigration); (2) if A < p, the BDI pro- 
cess  provides a model of a “source-sink’’ population 
complex (VAN HORNE 1983; PULLIAM 1988), where the 
island habitats contain the “sink” populations and (3) 
if p is an increasing function of  N, the BDI process 
provides a stochastic model of the logistic  growth  of 
island populations, with density-dependent population 
regulation due to an increase in the individual death 
rate with increasing population size. In all three cases, 
the genetic result predicted by equation (21) remains 
correct. 

A nonequilibrium  theory of population  genetic  struc- 
ture: The neutral theory of population genetic struc- 
ture has been developed mostly  based on the Fisher- 
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Wright model of population  demographic  structure 
(FISHER 1930;  WRIGHT 1931) and is concerned with 
predicting the expected genetic properties of popula- 
tions when a  “balance” is reached between the forces 
of migration, mutation  and genetic drift, i .e.,  the  point 
of genetic equilibrium. For an infinite-island model, 
the time required to approach halfway  toward this equi- 
librium, from some initial nonequilibrium variance, is 
In (1/2)/1n [ ( l  - m)2(1 - (1/2N))]   WHIT LOCK^^^^). 

Because the  expected genetic differentiation among 
populations, and  the time required to reach genetic 
equilibrium are  both functions of migration rate and 
population size, an  important question arising in stud- 
ies  of populations with detectable differentiation is 
whether they  have persisted long enough to have 
reached genetic equilibrium. An “equilibrium assump- 
tion” is particularly important when estimates of Nm 
are derived from genetic estimates of F q T ,  as  discussed 
above, using equation (26), which predicts the equilib- 
rium value  of (see e.g., WHERHAHN  1987;  WASER and 
ELLIOT 1991; reviewed by SLATKIN and BARTON 1989; 
SLATKIN 1994). 

For a BDI process, populations of two or more indi- 
viduals immediately achieve the value of fo and FqT pre- 
dicted by equations (21) and  (24), respectively (on aver- 
age).  Thus,  for an island-mainland population complex 
whose demographic  structure can be approximated by 
a BDI process, there is no  need to assume the system 
has persisted for any particular length of time ( i e . ,  no 
time is required to reach  “equilibrium”). As long as 
the initial conditions hold (Le . ,  the  population has 
evolved by a BDI process since either its  last extinction, 
or its origination), equations (21) and  (24) may be 
applied. This interesting result suggests the possibility 
of a non-equilibrium theory of population genetic struc- 
ture. 

DISCUSSION 

Rather than modifying existing models of demo- 
graphic-genetic structure by manipulating particular as- 
sumptions, we have presented in this paper  the genetic 
outcomes for  a  more  general model of population struc- 
ture with stochastic variation in  size, duration and age 
among  populations, using a BDI process. The BDI de- 
mographic model allows for a dynamic extinction pro- 
cess among populations, variation in individual popula- 
tion sizes, and a naturally arising age structure for 
individuals and populations. In particular, the model 
is more realistic for studying species with continuous 
overlapping generations  than Wright’s discrete-genera- 
tion island model. 

The effect on  the genetic differentiation among is- 
lands of regular population extinctions, arising due to 
demographic stochasticity, may also be readily studied 
using the  approach developed in this paper and will be 

examined in detail in a separate publication (B. RAN- 
NU, unpublished observations). The model we have 
presented most accurately describes ecological “island- 
mainland” population complexes, with continuous 
overlapping generations, and allows  us  to determine 
the probability of  IBD for random individuals within 
and among populations and  the average genetic differ- 
entiation among island populations. 

Few studies have examined  the genetic structure of 
populations for demographic models differing from the 
one  proposed by FISHER (1930) and WRIGHT (1931), 
despite the  great ecological importance of alternative 
population demographic structures in nature (LANDE 

1988). In a  pioneering study, MORAN (1958) considered 
a population structure based on a birth-death process 
in  which each event comprises a  random individual 
giving birth  and  another  random individual dying (ex- 
cluding the individual just  born). Moran’s model thus 
retains the  constant  population size assumption in- 
voked by FISHER and WRIGHT, while  allowing for ran- 
dom births and  deaths in continuous time, and  the 
result is a population that behaves, genetically, as a 
Fisher-Wright population whose  size  is roughly halved 
(see discussion  in  GALE 1990). MOW suggested that 
this reduction in  effective population size, for his con- 
tinuous-generation model, is due to an additional ele- 
ment of randomness caused by the process of choosing 
the survivors  following each death. 

Our analysis  of the genetics of a BDI model suggests 
that  population size no longer plays such an important 
role in population genetics theory if the assumptions of 
a  constant  population size and discrete nonoverlapping 
generations  are relaxed. FELLER (1951) has suggested 
that  the assumption of a  constant population size, for 
the Fisher-Wright model, plays a critical role in the 
theory, and that  dropping this assumption “will lead us 
to an entirely new theoretical model.” Our findings 
lend  support to his conjecture. 

A number of important results are  obtained by exam- 
ining the average probability of  IBD for a BDI process. 
The most significant finding is that  the  expected value 
of fo is a simple function of X, 4, and f i  , the individual 
birth  rate, the expected  number of immigrants, and  the 
probability of  IBD among immigrants. The  outcome 
is that  population size  has  only an indirect effect 
(and that in  special  cases) on the value of fo ,  and the 
death process has no effect, so long as individuals die 
at random. 

The familiar biological dictum that “there can be 
exchange of only a few individuals per  generation if 
the isolation is to have significant effects” (WRIGHT 
1939) also no longer holds under  a BDI model, because 
the effect of migration on FsT depends on the birth 
rate as  well  as the  number of immigrants [see equation 
(24)]. Becausefo and FST are  independent of the  death 
process, equations (21)  and  (24) may be applied to a 
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broad  range of demographic  structures  among island 
populations, including exponentially growing popula- 
tions, source-sink population complexes and popula- 
tions with densitydependent regulation due to  an in- 
creased death  rate. Finally, our equation  for  the average 
value offo may be applied without making any  assump- 
tions regarding  the age of the populations under con- 
sideration ( i e . ,  there is no need  to assume “genetic 
equilibrium”) so long as each population has been reg- 
ulated by a BDI process, with constantf, , since its incep- 
tion or its last extinction. 

The findings of this study  suggest that  further re- 
search should  be focused on the genetics of demo- 
graphic models other  than  the Fisher-Wright model. 
The  need  for  more  general  demographic models in 
population genetics theory has long  been recognized 
by a  number of  workers  in probability theory (FELLER 
1951; BARTLETT 1955; MOW 1962),  but  the solutions 
for the genetic stucture of populations under more gen- 
eral stochastic demographic models have often been 
considered  too difficult. Our findings suggest that some 
simple solutions exist, for  more  general models of de- 
mographic  structure,  at least for measures such as the 
probability of IBD of random alleles, and  the genetic 
differentiation among  populations as measured by FST. 
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APPENDIX 

Theorem: Consider a  population of at least two indi- 
viduals  with population size determined by a  birth, 
death  and immigration (BDI) process with birth rate A 
and immigration rate 4 (it will be shown that  the  death 
rate p is irrelevant and may be less than,  equal  to, or 
greater  than A). The probability that two immigrants 
are identical by descent (IBD) is given by f l  . The proba- 
bility that two individuals drawn at  random from the 
population are IBD, denoted by fo, is  given  by 

4fl + A 
4 + A  J 1 = - .  

Proof: Consider first that  the population is com- 
posed of only two individuals and  that this state has 
been  reached from an initial state of zero by the arrival 
of two individuals. The first individual is necessarily an 
immigrant, and the second may  have arisen by a  birth 
event or  an immigration event with probabilities in the 
ratio A @ ;  the probability of IBD equals one if the sec- 
ond individual is due to a  birth,  and f i  if the individual 
is an immigrant, so the  unconditional probability of 
IBD is 

4fl + A 
+ + A  

Now consider a population composed of three indi- 
viduals,  with this state having been reached from an 
initial state of zero by the arrival  of three individuals. 
A population of two individuals will increase to three 
individuals by a birth event with probability, 

2A 
4 + 2A’  

or by an immigration event with probability, 

4 
4 + 2 A ‘  

If the increase is due to a  birth,  the probability of IBD 
equals 

This result follows from the observation that  a  random 
pair of individuals contains one of the following combi- 
nations: the new individual and its parent, with proba- 
bility  of IBD equal to 1; the new individual and  the 
nonparent, with probability of  IBD equal to (4fl + A ) /  
(4  + A); or the two remaining individuals, with proba- 
bility of  IBD equal to (+f, + A ) / ( +  + A).If the increase 
is due to the arrival  of an immigrant, the probability of 
IBD is 

This result follows from the observation that  a  random 
pair of individuals contains one of the following combi- 
nations: the new individual and  one of the two re- 
maining individuals, with probability of  IBD equal to 
fi ; the two remaining individuals, with probability of 
IBD equal to (4  f L  + A) / (4  + A).  The overall probability 
of  IBD for two random individuals drawn from a popu- 
lation of three individuals is then 

In  general, if a population has reached  a size of n + 
1 from n due to a single arrival, the probability that the 
arrival was a birth is 

nA 
4 + nA’ 

and the  birth event results in a probability of  IBD equal 
to 
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This result follows from by observing that  a  random 
pair of individuals comprises a new-born individual and 
its parent with probability 2/n( n + l ) ,  and the probabil- 
ity of IBD is then 1; or it is some other pair with proba- 
bility 1-2/n(n + 1) and the probability of IBD is then 
(+f, + A) / (4 + A) (since the new-born individual has 
the same probability of IBD, with  any individual other 
than its parent,  that its parent  does).  The probability 
that  the arrival was an immigrant is  given  by 

4 + nA’ 

and  the immigration event results in a probability of 
IBD equal to 

The result follows by observing that the immigrant is 
among  the pair of individuals selected with probability 
2/(  n + 1), and  the probability of IBD is then f l  ; the 
immigrant is not  among  the pair of individuals selected 
with probability 1 -2/(n + l),  and the probability of 
IBD is then (4fl + A ) /  (+ + A). The unconditional 
probability of IBD in a  population of  size n + 1, that 
has grown from a  population of  size n by a single arrival 
is then 

+ [ l -  n(n + 1) 

+-(“fl+[l”][-]) + + n A  + n + l  n + l  2 +fl + + A  + A 

Now consider a population of two individuals that 
results from three new  arrivals (starting at zero) and a 
death. The  death removes a  random individual, and by 
symmetry the  remaining pair of individuals must have 
the same probability of IBD as the two potential pairings 
eliminated by the  death. A population of two individu- 
als that is reached by three arrivals and  a  death  there- 
fore has a probability of IBD equal to (+ f l  + A ) /  (+ + 
A).  In  general, any population of  size n - 1 that is a 
result of n arrivals and a  death will  have a probability 
of IBD equal to (+fl + A ) /  (4 + A) by the same argu- 
ment (ie., the  death removes n - 1 potential pairings, 
which  have the same probability of IBD as  any other n 
- 1 pairs, and so the probability of IBD is unchanged). 

Finally,  any sequence of arrivals and  deaths will leave 
the probability of IBD unchanged, and so the probabil- 
ity of IBD for any arbitrary population (even given the 
particular sequence of arrivals and deaths, though  not 
the  sequence of births and immigrations) is 


