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Abstract. A new method is presented for inferring
evolutionary trees using nucleotide sequence data. The
birth–death process is used as a model of speciation and
extinction to specify the prior distribution of phylogenies
and branching times. Nucleotide substitution is modeled
by a continuous-time Markov process. Parameters of the
branching model and the substitution model are esti-
mated by maximum likelihood. The posterior probabili-
ties of different phylogenies are calculated and the phy-
logeny with the highest posterior probability is chosen as
the best estimate of the evolutionary relationship among
species. We refer to this as the maximum posterior prob-
ability (MAP) tree. The posterior probability provides a
natural measure of the reliability of the estimated phy-
logeny. Two example data sets are analyzed to infer the
phylogenetic relationship of human, chimpanzee, gorilla,
and orangutan. The best trees estimated by the new
method are the same as those from the maximum likeli-
hood analysis of separate topologies, but the posterior
probabilities are quite different from the bootstrap pro-
portions. The results of the method are found to be in-
sensitive to changes in the rate parameter of the branch-
ing process.

Key words: Maximum likelihood — Phylogeny —
Nucleotide substitution — Posterior probability — Em-
pirical Bayes estimation — MAP tree

Introduction

Felsenstein (1973, 1981) proposed a maximum likeli-
hood (ML) method for inferring evolutionary trees using
discrete characters (such as nucleotide sequences) of ex-
tant species. A Markov model is used to describe the
evolutionary changes between character states and the
tree topology and branch lengths are treated as param-
eters (see also Thompson 1975; Bishop and Friday 1985;
Goldman 1990). Branch lengths and parameters in the
substitution model are estimated by maximum likelihood
for each tree topology, generating the (maximum) like-
lihood value for that topology. The tree with the highest
(maximum) likelihood is chosen as the estimate of phy-
logeny. Computer simulations have demonstrated a gen-
eral superiority of the ML method over other techniques
of tree reconstruction under a variety of conditions (Ha-
segawa and Yano 1984; Fukami-Kobayashi and Tateno
1991; Hasegawa et al. 1991; Tateno et al. 1994; Kuhner
and Felsenstein 1994; Yang 1994a, 1995; Gaut and
Lewis 1995; Huelsenbeck 1995a,b). With improved
computational power and increased acceptance of statis-
tical methods by molecular systematists, the method is
becoming more widely used.

Felsenstein’s method differs from conventional maxi-
mum likelihood parameter estimation in that the func-
tional form of the likelihood depends on the tree topol-
ogy (Nei 1987:323–325), and the regularity conditions
required for the asymptotic properties of maximum like-
lihood estimators are not satisfied (Yang 1994a, 1996).
As a result, it is unclear whether this method of topology
estimation shares all the asymptotic properties (espe-
cially efficiency) of maximum likelihood estimators ofCorrespondence to:Z. Yang
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parameters (Yang 1996). Another difficulty is the lack of
a reliable method for evaluating the significance of the
estimated tree. The method of nonparametric bootstrap-
ping (Felsenstein 1985), intended to provide a measure
of the sampling error of the estimated phylogeny, has
been found to give somewhat unreliable results
(Zharkikh and Li 1992; Hillis and Bull 1993), and its
correct interpretation has been a subject of controversy
(e.g., Felsenstein and Kishino 1993).

In this paper, we approach the problem of phyloge-
netic tree estimation from a somewhat different perspec-
tive. We use a birth–death process (Feller 1939) to
specify the prior distribution of tree topologies and di-
vergence times (or branch lengths) of the extant species
and a Markov process to model nucleotide substitution.
Parameters of the birth–death process and the substitu-
tion model are estimated by maximizing the likelihood
(the probability of observing the data). The (posterior)
probability of each tree topology, conditional on the
nucleotide sequence data and the estimated parameters,
is then calculated. The tree having the highest posterior
probability is taken as the estimate of phylogeny. This is
referred to as the maximum posterior probability (MAP)
tree. The MAP method differs from the ML method of
Felsenstein (1981) in that we treat topologies and branch
lengths as random variables rather than parameters.

The structure of the model is very similar to a model
studied by Cavalli-Sforza and Edwards (1967; see also
Edwards 1970). These authors analyzed gene frequency
data from human populations, using a Brownian motion
model to approximate the process of genetic drift in dif-
ferent populations and a Yule pure-birth process (Yule
1925) to model population branching events. Their
model was found to be mathematically intractable and
remains unanalyzed. Felsenstein (1973, 1981), when
adapting the method of Cavalli-Sforza and Edwards for
use with discrete character data, used a Markov process
to model character evolution and omitted the Yule pro-
cess in order to simplify the mathematics. We note, how-
ever, that the nature of nucleotide sequence data and the
independence of substitutions among sites assumed in
the Markov model of character evolution makes the com-
putation using either the Yule process or a birth–death
process feasible, at least for small numbers of taxa; in
this paper, we modify the model of Cavalli-Sforza and
Edwards to derive a new method for phylogenetic analy-
sis using nucleotide sequence data.

Models and Estimation Theory

The Data

Let sbe the number of sequences (species) andn the number of nucleo-
tides in each sequence; insertions and deletions are ignored and it is
assumed that the sequences are aligned with gaps removed. The data
can be represented as ans × n matrix, X 4 {xij}, where xij is the

nucleotide at thejth site in theith sequence. Thejth column of the data
matrix, xj 4 {x1j, . . . , xsj} 8, will be the nucleotides among species at
the jth site. The sequences are descended throughs − 1 speciation
events, which occurred at timest1,t2, . . . , ts−1 in the past, witht1 > t2
>. . . > ts−1. The time of the first bifurcation is set to 1 (i.e.,t1 4 1) and
parameters are then relative to this time scale; we lett 4 { t2, . . . , ts−1}.
An example tree of four sequences (s 4 4) is shown in Fig. 1A.

The Birth–Death Process

The birth–death process is a continuous-time process in which the
probability that a speciation event occurs along any lineage during an
infinitesimal time intervalDt is lDt, the probability that an extinction
occurs ismDt, and the probability that two or more events occur is of
order o(Dt). Parametersl andm are the branching and extinction rates
per lineage, respectively. The number of species at present (s), the
phylogenetic tree relating the species (t), and the times of divergence
(t) are all random variables under the model, with their distribution
determined by parametersl and m. The phylogenetic tree (t) is a
‘‘labeled history,’’ which is a topology with interior nodes ordered
according to their times of divergence (Edwards 1970). For example,
Figs. 1A and 1B have the same tree topology but are different labeled
histories. Apart from the ordering of the internal nodes, there is no
difference between a tree topology and a labeled history, and the two
terms are used interchangeably in this paper when there is no possi-
bility of confusion. Fors sequences, there arej 4 s!(s − 1)!/2s−1

distinct labeled histories (Edwards 1970). According to the birth–death
process, each of these labeled histories has equal probability of occur-
rence.

For the birth–death process, the probability that a lineage is extinct
after timet is (Kendall 1949)

p0(t) =
µ(1 − e−(l−µ)t)

l − µe−(l−µ)t (1)

The probability that a lineage leaves one descendent after timet is

p1(t) =
(l − µ)2e−(l−µ)t

(l − µe−(l−µ)t)2
(2)

Fig. 1. Two ‘‘labeled histories’’ of four sequences that have the same
tree topology. InA, the divergence event separating sequences 1 and 2
occurred after the divergence of sequences 3 from 4, while the opposite
is true inB. In Table 1, these two labeled histories are represented as
((12)(34)) and ((34)(12)), respectively. The divergence times aret1, t2,
and t3, with t1 4 1 > t2 > t3.
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and the probability that a lineage leavesi descendents after timet is

pi(t) = (l/µ)ip1(t)[p0(t)]
i-1 (3)

Thompson (1975) derived the joint density oft, t, ands,conditional on
t1 (the time of the first speciation event among surviving lineages) as

f (t, t, s; l, µ) =

2s−1ls−2[p1(t1)]
2)
i=2

s−1

p1(ti)

s!
(4)

Since the number of speciess is fixed, the distribution of the other
random variables should be conditioned ons. The probability of ob-
servings lineages at present, descended from two ancestral lineages
that arose at timet1, with each ancestral lineage leaving at least one
descendent, is

f (s; l, µ) = (
i=1

s−1

pi(t1)ps−i(t1) (5)

= (s− 1) (l/µ)s−2[p0(t1)]
s−2[p1(t1)]

2 (6)

Settingt1 4 1, we obtain the joint density oft and t, conditional on
observings species at present, as

f (t, t; l, µ) = f (t, t, s; l, µ)/f (s; l, µ) (7)

=

2s−1µs−2)
i=2

s−1

p1(ti)

[p0(1)]
s−2s!(s− 1)

(8)

If we setm 4 0, Eq. 8 reduces to the density for a Yule pure-birth
process, originally derived by Edwards (1970):

f (t, t; l) =

2s−1ls−2expH−l (
i=2

s−1

tiJ
s!(s− 1) (1− e−l)s−2

(9)

Model of Nucleotide Substitution

A continuous-time Markov process is used to model nucleotide sub-
stitution. The model used in J. Felsenstein’s DNAML program (since
1984, version 2.6) will be used in this paper, although other substitution
models are applicable as well. The substitution rate matrix under the
model is

Q = 1
· (1+ k/pY)pC pA pG

(1 + k/pY)pT · pA pG

pT pC · (1+ k/pR)pG

pT pC (1 + k/pR)pA ·
2 wm

(10)

whereQij (i Þ j) is the instantaneous substitution rate from nucleotide
i to j, with the nucleotides orderedT, C, A,andG. The substitution
process is assumed to be at stationarity with nucleotide frequencies
given bypT, pC, pA, andpG, with pY 4 pT + pC andpR 4 pA + pG.
Parameterspi (i 4 T,C,A,G) can be estimated using the average fre-
quencies of nucleotides over all sequences. The parameterk is the

transition/transversion rate ratio; ak greater than zero indicates that
transitions occur with greater frequency than transversions. The diago-
nals of the matrix are determined by the mathematical requirement that
sums of rows ofQ are zero (Grimmett and Stirzaker 1992:239–246),
and −Qii 4 SjÞiQij is the substitution rate of nucleotidei. The scale
factorw is determined asw 4 1/[2pTpC(1 +k/pY) + 2pApG(1 +k/pR)
+ 2pYpR], so thatm 4 −SipiQii is the average substitution rate. We
assume the existence of a molecular clock (i.e., rate constancy across
lineages).

The transition-probability matrix over timet is thenP(t) 4 {pij(t)}
4 eQt, wherepij(t) is the probability that nucleotidei transforms toj in
time t. The calculation can be performed by the diagonalization of the
rate matrixQ (e.g., Hasegawa et al. 1985; Thorne et al. 1992).

We assume that substitutions occur independently at different
nucleotide sites; the conditional probability of observing the sequence
data, given the tree topology (t) and the divergence times(t), is then a
product over sites

f (X|t, t; m,k) = )
j=1

n

f (xj|t, t; m,k) (11)

wheref(xj|t, t; m, k) is the probability of observing the nucleotides at
the jth site, conditional on topologyt and divergence timest. The exact
form of Eq. 11 depends on the tree topology (t). Consider the topology
of Fig. 1A, denoted ast1, and letx5j, x6j, x7j be the unknown nucleotides
at site j in the ancestral sequences at nodes 5, 6, and 7, respectively.
Then

f (xj|t1, t2, t3; m, k) = (
x7j
(
x6j
(
x5j

px7j
px7j x5j(1 − t3)px7j x6j(1 − t2)

× px5j x1j(t3)px5j x2j(t3)px6j x3j(t2)px6j x4j(t2) (12)

= (
x5j
(
x6j

px5j
px5j x6j(2 − t2 − t3)px5j x1j(t3)

× px5j x2j(t3)px6j x3j(t2)px6j x4j(t2) (13)

Because the substitution model is time-reversible (i.e.,piQij = pjQji for
any i,j), the ‘‘pulley’’ principle of Felsenstein (1981) is applied to
‘‘move’’ the root of the tree from node 7 (Eq. 12) to node 5, eliminating
one summation (Eq. 13). The conditional probabilities of other possible
labeled histories are calculated similarly.

Maximum Likelihood Estimation of Parameters

The probability of observing the sequence data (i.e., the likelihood
function) is

L(l, µ,m, k|X) = f (X; l, µ,m,k)

= (
t
*
t2=0

1
· · ·*

ts−1=0

ts−2
f (X|t, t; m, k)

× f (t, t; l, µ) dts−1 · · ·dt2 (14)

where the summation is over the labeled histories and the integrations
are over the divergence times. Analytical methods appear quite hope-
less for evaluating the preceding equations and we instead used nu-
merical integration to calculate approximate values of the likelihood
function (see below). The dimension of the integration for a tree ofs
sequences iss − 2, and the computation is feasible only for a small
number of species. Maximum likelihood estimates (MLEs) of param-
etersl, m, m, and k are obtained by maximizing the log-likelihood
function, , 4 log{L}. A numerical optimization algorithm was used
for this purpose.
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Posterior Distribution of Phylogenetic Trees

After parametersl, m, m, andk have been estimated, the (posterior)
probability of the labeled history (t), conditional on the observed se-
quence data, can be calculated as

f (t|X; l̂, µ̂, m̂, k̂) =
f (X, t; l̂, µ̂, m̂, k̂)

f (X; l̂, µ̂, m̂, k̂)
(15)

wheref(X; l̂, m̂, m̂, k̂) in the denominator is given by Eq. 14, withl̂,
m̂, m̂, and k̂ to be parameter estimates, and the joint probability in the
numerator is

f (X, t; l̂, µ̂, m̂, k̂) = *
t2=0

1
· · ·*

ts−1=0

ts−2
[f (X|t, t; m̂, k̂)

× f (t, t; l̂, µ̂)] dts−1 · · ·dt2 (16)

This is the ‘‘contribution’’ of tree topologyt to the likelihood function
(see Eq. 14). The tree topology having the maximum posterior prob-
ability (or the greatest contribution to the likelihood function) is the
MAP estimate of phylogeny. The posterior probability can be inter-
preted as the probability that the estimated tree is the true tree (under
the models), providing a measure of the reliability of the estimated
phylogeny. One can also construct a (minimum) set of most probable
trees with the sum of their posterior probabilities constrained to be no
less than a specified value, say 0.99. This is known as the highest
posterior density ‘‘credible set’’ (Berger 1985:140–145) of phylogenies
and is similar to the usual confidence interval of a parameter estimate.

Computational Methods

Calculation of the likelihood function (Eq. 14) involves evaluation of
an (s− 2)-dimensional integral for each labeled history. We have used
the numerical approach of repeated one-dimensional integration, evalu-
ating several algorithms for this procedure (see, e.g., Press et al. 1992:
129–164). The calculation does not seem practical with data for more
than five species (i.e., a three-dimensional integral). One difficulty is
that the functional form of the integrand in Eq. 14 changes with the tree
topology (labeled history), although a computer algorithm was devised
for performing the integration for any number of species and any tree
topology. A further complication is that the probabilities in Eqs. 11 and
13 are very small and cause underflows in the computer. The prob-
abilities also vary greatly for different values oft, which makes the
choice of a scaling factor (to prevent underflows) difficult. To over-
come this problem we calculated the log likelihood (,) using the for-
mula

, = C + logH(
t
*
t2=0

1
· · ·*

ts−1=0

ts−2
expS(

j=1

n

log{ f (xj|t, t; m,k)} − CD
× f (t, t; l, µ) dts−1 · · ·dt2 J, (17)

whereC is a scaling factor which may differ according to the values of
l, m, m, andk but is the same for different topologies (t) and diver-
gence times(t).

Analysis of Example Data Sets

We analyzed two data sets, one of nuclear DNAs and another of mi-
tochondrial DNAs from several primate species. Both the Yule pure-

birth process and the birth–death process were used as branching mod-
els. The birth–death process did not provide a better fit to the data (in
terms of the likelihood score) than the Yule process for either data set,
and the estimated death ratem̂ was zero in both cases. The results
presented below are therefore obtained using the Yule process model.

ch-globin Pseudogenes

Thech-globin pseudogenes of human, chimpanzee, gorilla, and orang-
utan (Miyamoto et al. 1987) are analyzed. There are 6,166 nucleotide
sites in each sequence, 5,891 (95.5%) of which are identical across
species. The average nucleotide frequencies estimated from these data
are p̂T 4 0.3074,p̂C 4 0.1853,p̂A 4 0.3072, andp̂G 4 0.2000.

Maximum likelihood estimates of the parameters arel̂ 4 0.000,m̂
4 0.015 ± 0.001, andk̂ 4 2.127 ± 0.345 (standard errors were cal-
culated numerically by inverting the second-order derivatives of the log
likelihood with respect to the parameters). The log-likelihood surface is
shown in Fig. 2 as a function of parametersl andm,with the transition/
transversion rate ratiok fixed at the MLE (k̂ 4 2.12679). The estimate
of l is subject to a large sampling error, as is clear from the log-
likelihood surface which is almost flat with respect tol. In contrast,
estimates ofm andk are much more reliable.

Table 1 lists the conditional log-likelihood value for each topology,
calculated as log{f(X|t; l̂ ,m̂,k̂)} 4 log{j × f(X, t; l̂ ,m̂,k̂)} at the
maximum-likelihood estimates of parameters under the MAP method.
This is comparable with the log-likelihood value calculated using the
ML method. The former is an average (integration) over the distribu-
tion of divergence timest2 andt3 and is always smaller than the latter,
which is calculated using the MLEs oft2 and t3 for the particular
topology considered. The order of the three best trees is identical by the
two methods (Table 1). These trees all have the orangutan as the first
species to diverge. The remaining 15 labeled histories have very small
posterior probabilities by the MAP method, while in the ML analysis,
each of the 12 remaining topologies (corresponding to the 15 labeled
histories) has at least one zero interior branch length.

We also calculated the bootstrap proportions of different phylog-
enies (Felsenstein 1985) using the approximate method of resampling
estimated log likelihoods (RELL, Kishino and Hasegawa 1989). The

Fig. 2. The log-likelihood (,) contour as a function of the branching
ratel of the Yule process and the substitution ratem. The transition/
transversion rate ratiok is fixed at its maximum likelihood estimate (k̂

4 2.127). The results are for thech-globin pseudogenes of human,
chimpanzee, gorilla, and orangutan.
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bootstrap proportions for the three best trees, i.e., ((human, chimpan-
zee), gorilla), ((chimpanzee, gorilla), human), and ((human, gorilla),
chimpanzee)—with the orangutan diverging first in all cases—are 0.59,
0.33, and 0.08, while the posterior probabilities are 0.84, 0.13, and
0.03.

Estimates ofk from the likelihood analysis of different topologies
are very similar and are close to the estimate obtained from the present
method. The divergence times in the tree can be estimated in the
present model by using the conditional meanE(t2,t3|X; l̂ , m̂, k̂), but
this is not pursued in this study as our primary interest is the tree
topology. The total tree length (i.e., the sum of branch lengths along the
tree), calculated as 2m̂(1 + t̂2 + t̂3) is much more similar across tree
topologies than separate estimates oft2 andt3. The estimates ofm from
the three best trees obtained using the ML method are similar to one
another and to the estimate obtained using the MAP method.

Mitochondrial tRNA Genes

The second data set to be analyzed comprises 11 mitochondrial tRNA
genes (739 nucleotides in each sequence) of the human, common chim-
panzee, pygmy chimpanzee, gorilla, and orangutan. The data, together
with some protein-coding genes, were used by Horai et al. (1992) and
Takezaki et al. (1995) to calculate the divergence times of the species.
The average nucleotide frequencies estimated from these data arep̂T 4

0.2625,p̂C 4 0.2472,p̂A 4 0.3378, andp̂G 4 0.1526.
Maximum-likelihood estimates of parameters arel̂ 4 1.430 ±

2.227, m̂ 4 0.051 ± 0.006, andk̂ 4 20.045 ± 8.642, with, 4

−1,563.78. Compared with the estimates obtained for thech-globin
genes, the mitochondrial genes have a high substitution rate (m) and a
very biased transition/transversion rate ratio (k). Once again, the esti-
mate ofl involves a large sampling error while the estimate ofm is
much more reliable.

The MAP tree is shown in Fig. 4, which is probably also the correct
phylogeny of these species. The posterior probability for this tree,
calculated using the MLEs for the parameters, is close to one (0.9999).

In an ML analysis of separate topologies, the same substitution model
and the molecular clock are assumed. The ML tree is also the one
shown in Fig. 4, with log likelihood, 4 −1,554.75 and parameter
estimatesm̂4 0.051,k̂ 4 20.033,t̂2 4 0.591 for the divergence of the
gorilla, t̂3 4 0.370 for the divergence of the human, andt̂4 4 0.168
for the separation of the two chimpanzee species. We have also used
the RELL approximate method of Kishino and Hasegawa (1989) to
calculate the bootstrap proportion for the ML tree. This is 0.89 and is
much lower than the posterior probability calculated from the MAP
method. The second best tree in the ML analysis has topology ((human,
(common chimpanzee, pigmy chimpanzee)), (gorilla, orangutan)), with
a bootstrap proportion of 0.09.

Discussion

Prior Distribution of Phylogenies

The birth–death process has been widely used as a model
of the speciation and extinction process, both by evolu-
tionary biologists (Yule 1925; Thompson 1975; Nee et
al. 1994) and by paleontologists (Raup 1985). However,
neither the simple birth–death process, nor a submodel of
it, the Yule process, is likely to accurately describe the
actual process of speciation and extinction, especially
when we consider the additional effect of species sam-
pling by biologists. A more realistic prior branching pro-
cess may be used in the present method as long as the
joint distribution of phylogeny and divergence times can
be derived. The birth–death process assigns equal prob-
ability to each labeled history, which seems reasonable

Table 1. Comparison of different labeled histories (tree topologies) using the MAP method of this paper and the ML methoda

Topology

MAP method ML method

log{ f(X|t)} f(t|X) , P(RELL) m̂ t̂2 t̂3 k̂

t1 4 (((12)3)4) -10,137.01 0.842 -10,132.33 0.587 0.015 0.524 0.495 2.133
t2 4 (((23)1)4) -10,138.86 0.133 -10,133.90 0.334 0.016 0.521 0.500 2.107
t3 4 (((13)2)4) -10,140.51 0.025 -10,135.56 0.079 0.016 0.517 0.503 2.070
t4 4 (((34)1)2) -10,185.92 0.000 -10,171.34 0.000 0.012 1.000 0.981 2.122
t5 4 (((24)1)3) -10,188.58 0.000 -10,173.54 0.000 0.012 1.000 1.000 2.076
t6 4 (((14)3)2) -10,186.20 0.000 -10,171.93 0.000 0.012 1.000 0.980 2.096
t7 4 (((14)2)3) -10,186.35 0.000 -10,171.93 0.000 0.012 1.000 0.980 2.096
t8 4 (((24)3)1) -10,189.86 0.000 -10,173.54 0.000 0.012 1.000 1.000 2.076
t9 4 (((34)2)1) -10,187.34 0.000 -10,171.34 0.000 0.012 1.000 0.981 2.122

t10 4 (((12)4)3) -10,178.83 0.000 -10,167.08 0.000 0.012 1.000 0.897 2.127
t11 4 (((13)4)2) -10,183.21 0.000 -10,171.57 0.000 0.012 1.000 0.922 2.055
t12 4 (((23)4)1) -10,183.03 0.000 -10,169.43 0.000 0.012 1.000 0.928 2.104
t13 4 ((12)(34)) -10,180.25 0.000 -10,167.08 0.000 0.012 1.000 0.897 2.127
t14 4 ((34)(12)) -10,186.02 0.000
t15 4 ((13)(24)) -10,184.89 0.000 -10,171.57 0.000 0.012 1.000 0.922 2.055
t16 4 ((24)(13)) -10,189.74 0.000
t17 4 ((23)(14)) -10,183.17 0.000 -10,169.43 0.000 0.012 1.000 0.928 2.104
t18 4 ((14)(23)) -10,186.48 0.000

a Thech-globin pseudogenes (6166 bp) of human (1), chimpanzee (2),
gorilla (3) and orangutan (4) are analyzed. MLEs of parameters under
the MAP approach (assuming the Yule process prior) arel̂4 0.000,m̂
4 0.015 andk̂ 4 2.127, with, 4 −10,139.73. In the ML method,
parameters are estimated independently for each topology, and, is the

log likelihood. In the labeled history ((12)(34)), the separation of spe-
cies 1 and 2 occurred after the separation of species 3 and 4, while in
the labeled history ((34)(12)) the opposite is true (see Fig. 1). Labeled
historiest13 andt14 have the same topology, as dot15 andt16, andt17
andt18
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given that we usually have no prior knowledge about the
phylogeny.

An important question is how sensitive the calculated
posterior probabilities are to the prior distribution. We
examined this problem by studying the change in the
posterior probabilities of the three best trees from the
analysis of thech-globin pseudogenes (see Table 1)
when the branching ratel of the Yule process is varied,
parametersm andk being fixed at their MLEs. The re-
sults are shown in Fig. 3. The posterior probabilities
appear insensitive to the value ofl, suggesting that most
of the information concerning the tree topology comes
from the sequence data rather than the prior distribution
specified by the Yule process. It is not clear whether this
insensitivity is due to the small number of species in the
study or is a more general property of the method.

Extensions of the Method

The substitution model used in this paper accounts for
different nucleotide frequencies and transition/
transversion rate bias. It is easy to extend the model to
account for among-site rate variation (Yang 1993,
1994b); for example, the discrete-gamma model of Yang
(1994b) can be incorporated into the present method in a
straightforward manner. Indeed, the conditional prob-
ability of Eq. 11 is the likelihood function for topologyt
in the ML analysis of topology, so any substitution
model developed for maximum-likelihood phylogenetic
analysis can be used in the MAP method.

For the ch-globin genes and mitochondrial tRNA
genes analyzed in this paper, the assumption of a mo-
lecular clock is statistically acceptable (Yang et al. 1995,
Z. Yang unpublished results). For data from more dis-
tantly related species, the molecular clock assumption is
often violated, and it is well known that ignoring rate
variation among lineages can lead to incorrect phyloge-
netic estimates. To relax the molecular clock assumption,
one might consider using independent rate parameters
for different branches in the tree, as is done in the like-
lihood analysis of separate topologies. Another possibil-
ity might be to construct a stochastic process for the
change of substitution rate over lineages, but this appears
difficult.

Since parameter estimates obtained using other meth-
ods can also be used to evaluate the posterior probabili-
ties of trees, it may be worthwhile to use approximate
methods to estimate parameters. In fact, apart froml and
m, other parameters such asm and k can be reliably
estimated using traditional ML methods, and ad hoc
methods for estimating these parameters are not difficult
to devise. Another possible method for approximating
the likelihood is Monte Carlo integration combined with
importance sampling (Robert 1994). As most of the
many possible phylogenies (labeled histories) contribute
little to the likelihood (see Table 1), sampling phylog-
enies might also be useful for estimation purposes (Kuh-
ner et al. 1995).

Posterior Probabilities and Bootstrap Proportions

The results of MAP analyses of thech-globin pseudo-
genes and the mitochondrial tRNA genes appear reason-
able. The ordering of the posterior probabilities of trees
generated by the method appear to correspond with ac-
cepted theories concerning the pattern of hominoid evo-
lution. The posterior probabilities obtained from the

Fig. 3. The log-likelihood (,) value and the posterior probabilities of
the three best trees,t1 4 ((human, chimpanzee), gorilla),t2 4 ((chim-
panzee, gorilla), human), andt3 4 ((human, gorilla), chimpanzee)—
with the orangutan diverging first in all cases (see table 1)—plotted as
a function of the branching ratel of the Yule process. Parametersm
and k are fixed at their maximum-likelihood estimates (0.015 and
2.127, respectively). The results are for thech-globin pseudogenes.

Fig. 4. The MAP (and also ML) tree for the mitochondrial tRNA
genes of human, common chimpanzee, pygmy chimpanzee, gorilla, and
orangutan.
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MAP method are generally more extreme than the boot-
strap proportions. Previous studies suggest that the boot-
strap method provides a conservative test of the signifi-
cance of the estimated phylogeny; it underestimates the
probability when the probability is high and overesti-
mates the probability when the probability is low
(Zharkikh and Li 1992; Hillis and Bull 1993). The pat-
terns of posterior probabilities and bootstrap proportions
found in this study (e.g., Table 1) suggest that the pos-
terior probabilities calculated in this paper may be more
reliable in measuring the accuracy of the estimated phy-
logeny. Nevertheless, it is probably worthwhile to per-
form simulations to evaluate the accuracy of the poste-
rior probabilities calculated in the present method when
the birth–death process model is not assumed.

Program availability: The method described in this
paper has been implemented in the PAML (Phylogenetic
Analysis by Maximum Likelihood) program package,
which is available by anonymous ftp at ftp.bio.indi-
ana.edu in the directory molbio/evolve.
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