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The use of molecular phylogenies to examine evolutionary questions has become com-
monplacewith the automation of DNA sequencing and the availability of efficient computer
programs to perform phylogenetic analyses. The application of computer simulation and
likelihood ratio tests to evolutionary hypotheses represents a recent methodological de-
velopment in this field. Likelihood ratio tests have enabled biologists to address many
questions in evolutionary biology that have been difficult to resolve in the past, such as
whether host-parasite systems are cospeciating and whether models of DNA substitution
adequately explain observed sequences.

Evolutionary biology is founded on the
concept that organisms share a common
origin and have subsequently diverged
through time. Phylogenies represent our at-
tempts to reconstruct this evolutionary his-
tory, and there is probably more interest in
phylogenetic reconstruction today than at
any time in the past. For years phylogenet-
ics played a relatively minor role in evolu-
tionary biology, and it is only in the past
decade that the importance of phylogeny in
most branches of biology has been fully
recognized (1, 2). Today it is not uncom-
mon to see phylogenies applied in fields far
removed from evolutionary biology. For ex-
ample, they have found a practical use in
tracing routes of infectious disease transmis-
sion and in identifying the relationship of
pathogens, such as the New Mexico hanta-
virus (3).

With the realization that phylogeny can
provide answers to many questions of inter-
est in evolutionary biology, there has been
an explosion in the number of statistical
tests that take phylogeny into account. In
part, this is because an essentially infinite
number of possible tests can be applied to
any biological question. A hypothesis test
involves calculating a test statistic from the
data and then determining the probability
of the observed statistic if the hypothesis
were true; the probability is obtained from
the null distribution of the test statistic
(that is, the distribution if the hypothesis is
true). For hypothesis tests involving phylog-
eny, the null distribution is usually gener-
ated by either permuting data matrices or
resampling from the original data. Howev-
er, the statistical properties of many tests
based on such procedures are known to be
poor, and although permutation of data ma-
trices is a common procedure, the null hy-
pothesis for many such tests is often not
well defined (4). Similarly, although non-
parametric bootstrapping is widely used to
evaluate the support of the data for a par-

ticular phylogeny, the statistical interpreta-
tion of bootstrap values remains problemat-
ic (5).

The past 5 years have seen remarkable
advances in the use of parametric statistical
tests of questions involving phylogeny. In
particular, increased computing speed, more
realistic models of DNA substitution, and
improved computer programs have led to
practical statistical tests using likelihood ra-
tios and Monte Carlo simulation proce-
dures. Although statistical tests can be con-
structed in many different ways (1, 6), we
concentrate in this review on likelihood
ratio tests (LRTs) for several reasons. First,
LRTs have the same status in hypothesis
testing as does maximum likelihood in pa-
rameter estimation. That is, just as maxi-
mum likelihood estimates (MLEs) are
known to have desirable statistical proper-
ties such as consistency, LRTs are known to
outperform other hypothesis tests under
many conditions. For example, LRTs are
known to be optimal (uniformly most pow-
erful) when comparing simple hypotheses,
and LRTs often perform well for cases in
which no optimal test is known (7). Sec-
ond, many applications of LRTs do not
assume that the phylogeny is known. This is
an advance over tests that assume that the
phylogeny is known without error (1) be-
cause all existing methods of phylogeny re-
construction are subject to both systematic
and random errors. In many cases, the error
in phylogeny estimation can be large (8).
Third, LRTs provide a unified framework
for testing hypotheses.

Maximum Likelihood and
Hypothesis Testing

Maximum likelihood estimation of phylo-
genetic trees was first introduced by Ed-
wards and Cavalli-Sforza in the early 1960s
(9). Felsenstein (10) implemented the meth-
od for DNA sequence data, and most recent

advances have focused on the analysis of
DNA sequences. Stated simply, the MLE of
phylogeny is the tree for which the observed
data are most probable. For the present pur-
poses, the data are aligned DNA sequences
for s species. The first step in a likelihood
analysis is to calculate the probability of the
observed sequences; this probability depends
on an explicit mathematical model of evo-
lution (11). The model consists of two parts:
(i) a phylogenetic tree with branch lengths
defined in terms of the expected number of
substitutions per site, and (ii) a model of the
process of DNA substitution (that is, speci-
fying the probability of the occurrence of a
nucleotide substitution at a particular site
over the length of a branch). For many
studies the phylogenetic tree is the only pa-
rameter of interest, but in the course of
finding the maximum likelihood tree, other
parameters are estimated that may also be
of importance (such as the transition rate–
transversion rate bias).

Much attention has focused on the ac-
curacy of the phylogenetic trees recon-
structed by maximum likelihood. Simula-
tion studies suggest that maximum likeli-
hood is typically more accurate (that is,
more likely to predict the actual evolution-
ary tree) and robust (that is, less sensitive to
incorrect models and assumptions) than
other methods of phylogenetic inference
(12, 13). Moreover, likelihood provides a
natural means of hypothesis testing (14).
The LRT statistic for comparing two hy-
potheses (L) is defined as

L 5
max[L(null hypothesisdata)]

max[L(alternative hypothesisdata)]

(1)

The likelihood L is maximized under both
the null and alternative hypotheses. The
likelihood ratio provides a measure of the
support of the data for one hypothesis versus
another. If L . 1, the data are more prob-
able under the null hypothesis, and this is
favored; the alternative hypothesis is fa-
vored if L , 1. When nested hypotheses are
examined (that is, the null hypothesis is a
special case of the more general, alternative
hypothesis), L will always be ,1 and22 log
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L is approximately x2 distributed under the
null hypothesis with q degrees of freedom,
where q is the difference in the number of
free parameters between the null and alter-
native hypotheses. Alternatively, the prob-
ability of observing a given L if the null
hypothesis were correct (the significance
level) can be calculated by using Monte
Carlo simulations, as explained below (15).

Although LRTs have a long history in
statistics, they have had only a limited ap-
plication in phylogenetics, with the first
application of an LRT (a test of the molec-
ular clock) proposed in 1981 (10). Why has
it taken so long for LRTs to be applied in
phylogenetic analysis? One problem con-

cerns the use of topology as a model param-
eter. It is known that many of the standard
results for LRTs do not apply to phyloge-
netic trees (16). For example, in consider-
ing nested phylogenetic hypotheses, the
usual x2 approximation to the distribution
of the test statistic often cannot be used to
determine the significance of the LRT sta-
tistic (16). This problem can be avoided,
however, by generating null distributions
using computer simulation (16, 17). In this
procedure, known as parametric bootstrap-
ping or Monte Carlo simulation, the null
distribution of the test statistic is calculated
by simulating many data sets (Fig. 1). Mon-
te Carlo simulation has been widely used in

statistics since the early 1960s (15). Model
parameters for the simulations are estimated
from the original data under the null hy-
pothesis. The likelihood ratio is calculated
for each simulated data set, and the propor-
tion of the replicates in which the likeli-
hood ratio calculated using the original data
is exceeded for the simulated data repre-
sents the significance level of the test.

Table 1 lists several hypotheses involving
phylogeny for which LRTs are available.
LRTs have been applied to problems such as
the relative fit of models of DNA substitu-
tion to sequence data and the evaluation of
evidence for the monophyly of a taxonomic
group. For many of the questions posed in

Table 1. Biological questions involving phylogeny that have been addressed using LRTs.

Question Assumptions Results

Are DNA substitution rates constant
among lineages [that is, does a
molecular clock exist (10)]?

H0: Assume that DNA substitution rates are equal
among lineages.

H1: Allow substitution rates to vary among lineages.

A molecular clock is most often rejected,
suggesting that there is rate variation
among lineages.

Is a DNA substitution model adequate to
explain the data (16)?

H0: Assume a particular model of DNA substitution.
H1: Assume a multinomial distribution for the

frequencies of site patterns.

Current models of DNA substitution fit the
observed data poorly. Sequences from
pseudogenes show the best fit.

Are DNA substitution rates biased for
different nucleotides (16)?

H0: Assume that substitution rates are equal among
nucleotides (for example, the transition rate
equals the transversion rate).

H1: Allow transition rate–transversion rate bias.

The addition of unequal rate parameters to
the substitution matrix usually provides
an improved fit of the model.

Are DNA substitution rates constant
among sites (27)?

H0: Assume equal rates among sites.
H1: Allow among-site rate heterogeneity.

The addition of parameters allowing
among-site rate variation typically
provides a significant improvement to
the fit of the model.

Are DNA substitution rates constant
among genomic regions [that is, in
different genes or different codon
positions (21)]?

H0: Assume that substitution rates are the same in
all data partitions (regions).

H1: Assume an independent substitution rate for
each partition (region).

Rates vary significantly among genomic
regions (for example, at different codon
positions).

Is the DNA substitution process identical
among lineages (22)?

H0: Assume a homogeneous substitution process
among lineages.

H1: Allow parameters of the substitution model to
vary among lineages.

Base frequencies and the transition
rate–transversion rate bias varied
significantly among four of the major
lineages that gave rise to present-day life
forms (22).

Are the substitutions in stem regions of
ribosomal DNA sequences correlated
(34)?

H0: Assume that substitution is independent among
sites.

H1: Allow correlated changes in nucleotide duplets in
stem regions.

A model that allows for correlated
substitutions at pair-bonded stem sites
of ribosomal DNA sequences provides
an improved fit of the model (34).

Is the DNA substitution process identical
among genomic regions (21)?

H0: Assume that the substitution parameters are the
same among genomic regions.

H1: Allow substitution parameters to vary among
genomic regions.

Base frequencies and transition rate–
transversion rate bias significantly varied
in first, second, third, and transfer RNA
partitions of mitochondrial data (21).

Is a prespecified taxonomic group
monophyletic (35)?

H0: Assume that a group is monophyletic.
H1: Relax the constraint of monophyly.

Analysis of partial HIV sequences from the
patients of a dentist supported the idea
of multiple sources of infection for one of
the patients (39).

Are phylogenies estimated from different
data congruent (31)?

H0: Assume that the same phylogeny underlies all
data partitions.

H1: Allow different phylogenies to underlie different
data partitions.

This test has not been widely applied.

Are the phylogenies for hosts and
parasites consistent with a common
history (25)?

H0: Assume an identical phylogeny for associated
hosts and parasites.

H1: Allow different phylogenies for hosts and
parasites.

For 13 species of gophers and their
associated lice, the phylogenies appear
different; for a subset of these species,
the phylogeny of hosts and parasites
appears identical (25).

Are the speciation times for hosts and
parasites the same (25)?

H0: Assume that hosts and associated parasites
speciated at the same time.

H1: Allow speciation times to vary independently in
hosts and parasites.

For five species of cospeciating gophers
and lice, the speciation times appear to
be identical (25).
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Table 1, alternative tests are available, some
of which are claimed to be nonparametric.
However, all statistical tests involving phy-
logeny require assumptions about the evolu-
tionary process, even though an explicit
model may not be used. Assumptions about
the process of evolution are required, for
example, when estimating a phylogenetic
tree. One of the advantages of LRTs is that
model assumptions can themselves be tested
and potentially improved.

Tests of Models of DNA
Substitution

All phylogenetic methods make assump-
tions, whether explicit or implicit, about
the process of DNA substitution. System-
atists are in an awkward situation in that

they know the assumptions of a phyloge-
netic method are imperfect. Yet they also
know that the match between the process
of nucleotide substitution generating the
sequence variation and the substitution
model assumed may be critical. The realism
of substitution models is important because
methods for inferring phylogeny may be less
accurate, or may be inconsistent (that is,
converge to an incorrect tree with increased
amounts of data), in situations where the
model is incorrect (8, 13, 18). Evolutionary
biologists also have an intrinsic interest in
accurately modeling the processes that pro-
duce variation in DNA sequences and
thereby improving our understanding of
molecular evolution. Molecular systematists
interested in phylogenetic inference have
long been troubled by the question of how

to choose the optimal substitution model
for a particular data set. Maximum likeli-
hood provides a rational method for choos-
ing substitution models for phylogenetic
analysis through the use of LRTs.

Current models implemented in phylo-
genetic inference using maximum likeli-
hood (and several other methods as well)
assume that DNA substitutions follow a
Poisson process. The most general model
allows each type of nucleotide substitution
to have an independent rate parameter
(there are 12 rate parameters in total) (19).
Also, rate heterogeneity among sites can be
accommodated by assuming that rates are
distributed among different sites according
to some probability distribution (usually a
gamma, Bernoulli, or log-normal distribu-
tion), or by assigning sites to different rate
classes (for example, first, second, and third
codon positions) and then estimating the
substitution rate for each class (20). The
models implemented in likelihood have
also been modified to allow parameters to
be estimated separately for different data
partitions or for different branches of the
phylogenetic tree (21, 22). In short, the
substitution models used in a phylogenetic
analysis can be made arbitrarily complex by
the addition of parameters, each of which
can be estimated using likelihood methods.

One approach to the choice of models in
phylogenetic analysis is to use a very com-
plicated (parameter-rich) model for which a
large number of free parameters will result
in a high likelihood. However, this ap-
proach has several disadvantages. First, be-
cause a large number of parameters must be
estimated for complicated models, the anal-
ysis becomes computationally difficult. Sec-
ond, the error associated with each param-
eter estimate is higher for more complicated
models than for simple ones. This decrease
in accuracy appears to apply to all parame-
ters of the phylogenetic model, including
the topology; in certain cases, the accuracy
of the estimated phylogeny may be im-
proved by using a simpler model (although
this is not universal) (12, 13). Finally, an
overly complicated model may not be need-
ed to account for the observed data. Oc-
cam’s razor provides a principle for choosing
among hypotheses that explain a set of
observations equally well; the simpler (most
parsimonious) hypothesis is preferred. Al-
though a complicated model may make the
observed data more probable, it will not
necessarily provide a significant improve-
ment in the likelihood over a model with
fewer parameters.

How can the model be chosen that best
fits the data without introducing superflu-
ous parameters? One approach is to com-
pare the likelihoods of different models us-
ing an LRT (10, 16, 23). The significance

Original data

–2 log Λ –2 log Λ

Simulated data

Null model

Parameters
Likelihood

Parameters
Likelihood

Alternative model
Null model

Parameters
Likelihood

Parameters
Likelihood

Alternative model

Fig. 1. A diagram illustrating the ap-
plication of parametric bootstrap-
ping to determine significance lev-
els. Parameters from the original
data are estimated using maximum
likelihood. The MLEs of parameters
under the null model are used to
construct many simulated data sets
of the same size as the original. For
each simulated data set, the LRT
statistic (22 logL) is calculated and
compared with the value obtained
for the original data.

Table 2. LRT results for the gopher-louse COI data set. LRTs were performed for three hypotheses of
DNA substitution. The null hypothesis for the test of “equal transition and transversion rates” constrains
the transition rate to be equal to the transversion rate. The null hypothesis for the test of “equal rates
among sites” is that all sites have an equal rate of substitution, whereas the alternative hypothesis allows
rates to be gamma-distributed random variables. The null hypothesis for the test of the molecular clock
assumes that the rates among lineages are equal. LRTs reject the null hypotheses of an equal transition
rate–transversion rate bias and equal rates among sites but do not reject the molecular clock null
hypothesis. F81 indicates maximum likelihood estimation under the F84 model of DNA substitution, but
with k 5 0.0 (40). Analyses were performed with the constraint of a molecular clock (c) or without the
clock constraint (nc). Single and double asterisks indicate significance at P , 0.05 and P , 0.005,
respectively.

Data Model of DNA
substitution log L0 log L1 22 log L

Test of equal transition/transversion rate
Gophers (all positions) F81 vs. F84 (nc) 22227.98 22102.14 251.68**
Lice (all positions) F81 vs. F84 (nc) 22776.18 22637.11 278.14**
Gophers (all positions) F81 vs. F84 (c) 22243.26 22114.91 256.70**
Lice (all positions) F81 vs. F84 (c) 22782.23 22643.62 277.22**

Test of equal rates among sites
Gophers (all positions) F84 vs. F841G (nc) 22102.14 21913.33 377.62**
Lice (all positions) F84 vs. F841G (nc) 22637.11 22345.76 582.70**
Gophers (all positions) F84 vs. F841G (c) 22114.91 21923.01 383.80**
Lice (all positions) F84 vs. F841G (c) 22643.62 22352.55 582.14**

Test of molecular clock
Gophers (all positions) F81 (c vs. nc) 22243.26 22227.98 30.56**
Lice (all positions) F81 (c vs. nc) 22782.23 22776.18 12.10
Gophers (all positions) F84 (c vs. nc) 22114.91 22102.14 25.54*
Lice (all positions) F84 (c vs. nc) 22643.62 22637.11 13.02
Gophers (all positions) F841G (c vs. nc) 21923.01 21913.33 19.36
Lice (all positions) F841G (c vs. nc) 22352.55 22345.76 13.58
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of the LRT statistic (L) can be approximat-
ed using simulation or, if the models are
nested, by comparing 22 log L to a x2

distribution, with q degrees of freedom,
where q is the difference in the number of
free parameters between the null and alter-
native models of DNA substitution.

For illustrative purposes, we applied this
procedure to mitochondrial cytochrome ox-
idase I (COI) DNA sequences gathered by
Hafner et al. (24) for 13 species of gophers
and their associated lice (Table 2). First, we
examined the molecular clock hypothesis
(10). This hypothesis is satisfied if DNA
substitutions follow a Poisson process and
the mean rate of substitution has remained
constant in different lineages. The log like-
lihood calculated under the clock hypothe-
sis is log L 5 –2243.26 for the gophers and
log L 5 –2782.23 for the lice when a simple
model of DNA substitution is used. A more
general model assumes that each branch of
the phylogenetic tree has a unique uncon-
strained rate of substitution. This introduc-
es s – 2 additional parameters; the likeli-
hood for this latter model is therefore high-
er than that under the molecular clock
hypothesis (log L 5 –2227.98 for the go-
phers and log L 5 –2776.18 for the lice).
Because the models are nested (that is,
equal rates among lineages are a special case
of the unrestricted model) and the phylo-
genetic tree is held constant, the statistic –2
log L can be compared with a x2 distribu-
tion with s – 2 degrees of freedom to deter-
mine the significance of the test (10). In
this case, the molecular clock hypothesis
cannot be rejected for either the gophers or

the lice. The same LRT procedure applied
to the models of DNA substitution shows
that the best-fitting model for the gophers
and the lice allows for different rates for
transitions and transversions, unequal base
frequencies, and among-site rate heteroge-
neity (25).

The ability to choose among models in
performing a phylogenetic analysis is one of
the great strengths of a likelihood approach.
For many widely used phylogenetic meth-
ods, there are no generally accepted criteria
for choosing among possible evolutionary
models [but see (26)]. For example, the
maximum parsimony method allows many
types of data to be analyzed under a large
class of substitution models or “weighting
schemes,” but few criteria exist for choosing
among weighting schemes. Methods for
choosing models are important because dif-
ferent models may lead to different conclu-
sions about phylogeny. Much of the arbi-
trary nature of model choice is eliminated
by using a likelihood framework; when dif-
ferent substitution models provide different
estimates of phylogeny, the tree associated
with the best-fitting model is preferred.

The study of substitution models using
LRTs has also provided molecular evolu-
tionists with insights about how the process
of DNA substitution operates. Application
of LRTs indicates that some of the param-
eters of models of DNA substitution, which
reflect the biology, are very important. For
example, accounting for among-site rate
heterogeneity almost always provides an
improved fit of the model to the data [there
is not as significant an improvement for

pseudogenes, for which selection has been
relaxed (27)]. The improvement in the like-
lihood obtained by adding among-site rate
heterogeneity is usually so great that formal
consideration of the significance level is
unnecessary. However, LRTs also allow
tests of much more subtle hypotheses, such
as the way in which the process of substi-
tution differs across the genome (21).

Tests for Phylogenetic
Association

One of the most innovative and useful ap-
plications of phylogenies involves the com-
parison of topologies estimated for different
partitions of a data set (for example, differ-
ent genes) for different species. If the par-
titioned data share a common evolutionary
history, then the topologies estimated from
each should be congruent. A comparison of
topologies from different data partitions has
been used to identify horizontal gene trans-
fer in bacteria and fungi (28); horizontal
gene transfer may be suspected if the tree
estimated using one gene is different from
the tree estimated using another gene for
the same set of species. Similarly, compari-
son of tree topologies has been used to
examine the rate of reassortment of the
RNA segments in the hantavirus (29). The
hantavirus has three negative sense RNA
segments; when more than one virus infects
a cell, the opportunity exists for reassort-
ment of the infecting viral segments among
the progeny. If genetic reassortment plays
an important evolutionary role in the han-
tavirus, then the trees estimated for the
same set of viruses from different segments
should be [and are (29)] different. Finally, a
comparison of the phylogenies for hosts and
parasites is a critical step in determining
whether they have cospeciated. Cospecia-
tion of hosts and associated parasites is in-
voked if the branching patterns and specia-
tion times of the host and parasite trees
agree (30).

Although many important questions can
be addressed in the areas of evolutionary
biology and epidemiology by comparing
phylogenetic trees for different species or
different genes, until recently there have
been few statistical criteria for deciding
whether the trees are in agreement. A like-
lihood approach uses a LRT of the hypoth-
esis that trees estimated for different data
partitions, or different species, are congru-
ent [that is, the phylogenetic history is the
same (31)]. The null hypothesis for the
LRT of congruence is that the same topol-
ogy underlies different data partitions; the
likelihood is maximized under this con-
straint, but other parameters of the evolu-
tionary model (such as the branch lengths
or the transition rate–transversion rate ra-

Gophers Lice

O. cherriei

O. heterodus

O. hispidus

P. bulleri

Z. trichopus

C. merriami

C. castanops

G. personatus

G. breviceps

G. b. majusculus

G. b. halli G. oklahomensis

G. ewingi

G. geomydis

G. texanus

G. expansus

G. nadleri

G. trichopi

G. perotensis

G. chapini

G. costaricensis

G. cherriei

G. panamensis

G. setzeriO. underwoodi

O. cavator

Fig. 2. The MLEs of phylogeny for 13 gopher and louse species for COI sequence data (13 pocket
gopher species in the genera Cratogeomys, Geomys, Orthogeomys, Pappogeomys, and Zygogeomys
and 13 louse species in the genera Geomydoecus; Geomys bursarius is abbreviated as G. b.). Maxi-
mum likelihood trees were estimated using the programPAUP*, version 4.0 (37 ). The substitutionmodel
assumed in the analysis allows unequal transition and transversion rates, unequal base frequencies, and
among-site rate heterogeneity (38). The log likelihoods for the gopher and louse trees are log L 5
21923.01 and log L 5 22352.55, respectively.

SCIENCE z VOL. 276 z 11 APRIL 1997 z http://www.sciencemag.org230



tio) are estimated independently for each
data partition. The likelihood under the
alternative hypothesis relaxes the con-
straint that the same topology underlies all
data partitions, although all other aspects of
the model are the same.

The LRT of congruence has been suc-
cessfully used to explore questions of host-
parasite cospeciation (25). In closely asso-
ciated host-parasite systems, an allopatric
speciation event in a host lineage might be
expected to isolate parasite populations as-
sociated with each incipient host species,
thereby producing a simultaneous allopatric
speciation event among parasites. A history
of cospeciation in host and parasite lineages
should then be reflected by congruent phy-
logenies for hosts and their associated par-
asites. What does application of the LRT of
congruence indicate about cospeciation in
the gopher-louse system? The LRT statistic
for the null hypothesis (that the phylog-
enies for gophers and lice are congruent) is
much smaller than would be expected if the
null hypothesis were true (32). Hence, al-
though the trees for the gophers and lice are
similar (24, 25, 33), the gophers and lice
did not strictly cospeciate; host-switching
by the lice, persistence of multiple ancestral
louse lineages, or both must be invoked to
explain the differences between the phylo-
genetic trees.

Are there any portions of the gopher-
louse tree that are congruent and suggest
cospeciation? Analysis of a subset of the
associated gopher and louse species (the top
five gopher and louse species of Fig. 2) sug-
gests that these gopher and louse species
have cospeciated. A more refined LRT sug-
gests that the speciation times of the associ-
ated gopher and louse species are also iden-
tical. The null hypothesis for a LRT of “tem-
poral cospeciation” assumes that the tree
and the relative branch lengths for host and
parasite phylogenies are the same but that
the overall rate of substitution for the two
trees may differ (25). The alternative hy-
pothesis relaxes the constraint that the
branch lengths for the host and parasite
trees are proportional. The null hypothesis
that the branching times are identical can-
not be rejected, which is consistent with a
model of cospeciation for five of the associ-
ated gopher and louse species. Because these
species appear to have cospeciated, we can
also examine whether the substitution rate
differs between gophers and lice (24, 25,
33). An LRT of the null hypothesis that the
substitution rates are identical in hosts and
parasites reveals that the substitution rate is
much higher in lice than in gophers [3.01 6
0.53 times the rate for gophers (25)]. This
rate difference may have several biological
explanations, including a higher mutation
rate in lice or a shorter generation time (24).

Prospects for Likelihood Ratio
Tests in Phylogenetics

The field of phylogenetics has seen remark-
able advances in the past 40 years; the
principal aim has progressed from recon-
structing phylogenies, with little concern
for sources of error, to evaluating the reli-
ability of trees and (more recently) address-
ing biological questions using phylogenies.
Maximum likelihood and LRTs have played
an important role in the development of
phylogenetics and should continue to pro-
vide a source for advances. In many ways,
testing evolutionary hypotheses that are de-
pendent on phylogeny presents an unusual
and difficult statistical problem to the evo-
lutionary biologist. However, it appears that
standard statistical approaches may be ap-
plied successfully. We have shown that
LRTs can be used to study a wide range of
biological questions, such as the fit of a
substitution model to sequence data and the
agreement of phylogenies estimated from
different data sets. However, the applica-
tion of LRTs in phylogenetics is a relatively
recent phenomenon, and the range of ques-
tions that can be addressed by LRTs is
currently limited (Table 1). For example,
several questions of general interest in biol-
ogy, such as whether two or more characters
are correlated (1), can be addressed using
LRTs only in restricted circumstances (34).
Moreover, questions concerning morpho-
logical evolution are difficult to address us-
ing LRTs because realistic models of mor-
phological evolution are generally lacking.

Although LRTs have proven useful for
studying a variety of biological hypothe-
ses, several unresolved questions remain
concerning the general utility of the ap-
proach. Few studies have examined the
power of LRTs for testing particular phy-
logenetic hypotheses, or whether such
tests are biased (16, 35). Another problem
involves the computational expense of the
hypothesis testing procedure; the likeli-
hood is repeatedly maximized for many
simulated data sets, and this can quickly
stress the computer resources of most re-
search laboratories. A potential solution
to this problem is to perform a small num-
ber of replicates and then fit a probability
distribution, such as a x2 or gamma, to the
simulated likelihoods. Also, simple LRTs
may not be appropriate in all situations.
Methods of sequential analysis are needed
when a hypothesis is originally tested us-
ing one data set and later reexamined
using additional data (36).

Explicit model-based methods are a re-
cent innovation in phylogenetics. One ad-
vantage of these approaches is that the
exact hypothesis being tested is clear if the
test is properly formulated. These methods

also offer the possibility that evolutionary
models may be gradually improved as new
biological processes are discovered and in-
corporated into the models used for phylo-
genetic analysis. Statistical approaches to
phylogenetic inference have led to many
improvements in our understanding of the
process of DNA substitution over the past
decade, allowing a much broader range of
biological questions to be examined in a
rigorous way.
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