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ABSTRACT In this paper we propose a method to estimate
by maximum likelihood the divergence time between two popu-
lations, specifically designed for the analysis of nonrecurrent
rare mutations. Given the rapidly growing amount of data, rare
disease mutations affecting humans seem the most suitable
candidates for this method. The estimator RD, and its conditional
version RDc, were derived, assuming that the population dynam-
ics of rare alleles can be described by using a birth—death process
approximation and that each mutation arose before the split of
a common ancestral population into the two diverging popula-
tions. The RD estimator seems more suitable for large sample
sizes and few alleles, whose age can be approximated, whereas
the RDc estimator appears preferable when this is not the case.
When applied to three cystic fibrosis mutations, the estimator RD
could not exclude a very recent time of divergence among three
Mediterranean populations. On the other hand, the divergence
time between these populations and the Danish population was
estimated to be, on the average, 4,500 or 15,000 years, assuming
or not a selective advantage for cystic fibrosis carriers, respec-
tively. Confidence intervals are large, however, and can probably
be reduced only by analyzing more alleles or loci.

The amount of genetic divergence between two isolated popu-
lations tends to accumulate with time, following their subdivision
from a common ancestral population. New alleles are indepen-
dently generated in each descendent population by mutation, and
the frequencies of the pre-subdivision alleles tend to diverge due
to the random sampling of genes in each generation (genetic
drift). These two processes therefore leave a signature, increas-
ingly evident with time, on the genetic composition of the
subdivided populations.

Several methods have been proposed to estimate the time, in
the past, when two or more populations arose from a single
ancestral population (i.e., the divergence time). Takahata and Nei
(1) suggested that the net number of nucleotide substitutions d
accumulated between two populations (called also d 4 in ref. 2) be
used to estimate the time of their divergence. If the two popu-
lations have the same constant size, d is expected to increase
linearly with the product w7 (where p is the mutation rate and T’
is the divergence time). The same linear increase with u7 is
predicted for the genetic distance (8w)? (3), computed as the
square of the difference between the average allele size observed
at microsatellite markers in the diverging populations. In both
cases, therefore, an estimation of 7 can be simply obtained if the
mutation rate is known.

Another commonly used approach (see, for example, ref. 4) is
to first estimate Wright’s Fy, (5) from allele frequencies and then
use this estimate to predict the divergence time. The relationship
Fy=1—¢"T2N(5,6) can be used to estimate the divergence time
T, given that the populations have the same constant and known
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size N. This estimator is based on a model of genetic drift without
mutation, and it is therefore most suitable for populations that
have recently separated. However, when the differences between
alleles are taken into account by using equivalents of F, that allow
for mutation [such as ¢y (7) or Ry (8)], equivalent estimators
become feasible for older population subdivision events (8).

More recently, Nielsen et al. (9) have proposed a maximum
likelihood estimator based on the coalescent process and assum-
ing no mutation. When applied to simulated data from stable
populations, this estimator appears to have less bias and lower
variance than an Fy-based estimator (9).

In this paper we present another likelihood estimator of the
time of divergence of two populations, specifically designed for
the analysis of rare alleles that have arisen by nonrecurrent
mutation. Rare alleles are becoming an important source of
information on human populations as more disease mutations are
mapped, more effort is focused on the study of population
frequencies of disease mutations, and large-scale programs of
genetic screening are becoming a realistic possibility. The method
we present here is best suited for analyzing data on rare disease
mutations, since it assumes that the number of copies of each
mutant (at the same or different loci) can be modeled by using a
stochastic birth—death process with sampling (10, 11). This as-
sumption, which is satisfied if mutants are rare (12), allows many
demographic factors, including selection and population growth,
to be introduced into the model in a relatively simple way. This
approach also greatly simplifies the analysis of multiallelic and
multilocus data.

The Model

We consider a simple model of an ancestral population (labeled
population 0) that separates into two descendent populations
(labeled populations 1 and 2) at a time 7 generations in the past.
The descendent populations experience no immigration. A rare
allele is assumed to have arisen by nonrecurrent mutation at time
T + t in the past. When the population split occurs, any copy of
the allele in the ancestral population has a probability s and (1 —
s) of joining one, or the other, descendent population.

Within each population, we assume that the demography of the
mutant lineages can be described by using a birth—death process
approximation to the coalescent model, valid when the allele has
remained rare (12). Population sizes are allowed to change over
time according to an exponential process of growth (or decline)
with rates & (ancestral population), &, and & (descendent
populations).

The Likelihood

A mutant allele arises at time 7 + ¢ in the past. The probability
distribution of the total number of alleles descended from the
mutant, k, that existed immediately prior to the population
subdivision event T generations ago is

Abbreviations: pdf, probability distribution function; pgf, probability

generating function; CF, cystic fibrosis.
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Pr(k) = (1 - Vt)Vtk72 k=2, [1]
where (see ref. 12) v, is defined as
DEne b
v=1- So [2]

L= (1= 2g)e

Let j; be the number of copies of the mutant that enter descen-
dent population 1 at the population subdivision event and let j,
be the number that enter descendent population 2. The joint
probability distribution function (pdf) of j; and j, conditional on
k = j1 + jz, iS
oo kY . ,

Pr(jy, jolk) = {; )s"(1 = s)™. [3]

The joint probability generating function (pgf) of j; and j,,

conditional on k, is then
k

kY o
(bfl’fz\k(zla 22) = j;() <j1>5]1(1 — S)fzzlllzjzz
= (22 —8z; + le)k, [4]

The unconditional joint pgf of j; and j is
‘15/'1,/2(21, z) = k22 (z2 = 525 + sz)k(1 — Vt)V5(72

(z2 = sz, +521)*(1 — v)

= . 5
1 — vz, +svz, —svz; 51

Using standard techniques (see ref. 13), we obtain the probability
of j; and j, by evaluating the j;th and j,th-order partial derivatives
with respect to z; and z; as follows

1 ajl+j2¢jl,jz(21, z5)

1’]2' 6271162122

Pr(jy, j») :j [6]

z1=2,=0

By examining successive terms of the pdf obtained from the pgf
in this manner, a general formula for the unconditional pdf of j;
and j, may be obtained

i+, (1 — v . .
e = () S i - sy

forallj, +j, = 2. [7]

We will assume that no additional mutations occur at the site of
interest (this condition is satisfied when the product of divergence
time 7 and the mutation rate is small), which implies that each
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and the conditional pdf is then

Pr(jy, joljs > 0, j» > 0) = (’1;’2> (sv Y (1 = 8)v,)?

1+ v(1 =s)(sv, — DA — )
V(1= s)s(v,— 2)

[9]

Let /; be the number of copies of the mutant found in population
i immediately after the divergence event at time T that leave one
or more descendents in a present-day sample from population i,
where i is either 1 or 2. The pdf of /; is a binomial of the form

Pr(l,-[j,—) = (‘]ll> l]",(l - QTi)jlill 0= li Sjia [10]

where Q; is the probability that an allele in population i leaves
one or more descendents at present and is given by (see ref. 12)

2fiéi

On = =, - 28)e &

[11]

where the sampling fraction f; is the probability that a chromo-
some in the present-day descendents of population i is sampled.
The pgf of ;, conditional on jj, is

Ji : ) ‘
¢y (zi) = E (2) (L= QpYiliz!

=0
=(1—Qp+ Qnz). [12]

Because the drift processes in descendent populations 1 and 2
after the subdivision event are independent, the joint pgf of /; and
L, conditional on j; and j,, is a product of the pgfs of /; and I,

@1, 22) = (1= Opy + Qpz))'(1 = O + Opozp)™. [13]

The unconditional joint pgf of /; and / is then
b10,(z15 22) = '21 '21 1), 21 22)Pr(ie, folji > 0, j2> 0).
j1=1 jo=
[14]

Using standard methods (see above), the pdf can be obtained
from Eq. 14 and is

1)12711’1‘11”272(7’1 = D(s — 1)57’:2 +v,—1)

Pr(ly, [,) = ( I

I+ 12> (=D)"'O "0 " s —
(v, = 2)((Qra(s

— 1) _ QT]S + 1)1/[ _ 1)11+lz+1 . [15]

descendent population must have contained at least one copy of
the mutant allele after the divergence event so that we must
condition on j; > 0 and j, > 0. It is easy to show that

We must once more condition on the fact that at least one copy
of the mutant allele leaves descendents in each population
sample. This conditional probability is

Pr(ll, lz|ll > 0, lz > O) = ( 12

I+ lz> (D" 10 s = DI 1 — Dy H(Qpa(s — 1) + Dy, — D((Qs — Dy, + 1)
(Qras = 1) = Qpus + Dy, = V2(Qr — Qs + Qs — 2y, + 2) '

[16]

J1=1 2=

Pr(j, > 0,j,>0) = 2, , Priis, o)

B (1 —=s)s(v, —2)
T (1 + vl =)y, —1)°

[8]

The pdf of the number of copies of the mutant allele in a sample
from population #, denoted as n;, conditional on /; is (see, e.g., ref.
10)

n;, — 1 ni—
Pr(n/]l,) = <”i _ li>(1 — vp) g i [17]
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where we define (see ref. 12)

2&e —er
Since the drift processes in the two populations are independent,
the joint distribution of n; and n,, given /; and l, is

ng—1\(n,—1
Pr(ny, nolly, 1) = <n11 _ l]) <n22 _ lz>(1 — vty

(18]

VT,':1

X (1 _ vn)lzvnnz—lz. [19]

The unconditional pdf of n; and n, is then calculated, using Eq.
16 and Eq. 19, as

ni n2
Pr(ny, ny) = E E Pr(n,, nZ‘lla L)Pr(l, 12‘11 >0,1,>0).
=1 L=1
[20]

To simplify the evaluation of the sum Eq. 20 we used the iterative
relationship

Pr(ll = i, lz :j|ll > 0, 12 > 0) =
Prl,=i—1,L=jl; >0,l,>0) X (1 +];)
v —0ri5Y,

(Qnls =) = Ons + Du — 1)

=Pr(11=i,12:jf1|11>0,12>0)x(1+;)

% —0pn(1 =)y,
Qs = 1) = Qps + Dy, = 1) 7

Eq. 20 is the basis for the likelihood function of 7 used in our
analysis:

[21]

L(T|n17 Na; d/) = Pr(”la n2|T7 ll/)7 [22]

where ¢ = {1, s, &, &, &, fi, fo} is a vector of the additional
unknown (nuisance) parameters.

The likelihood function for multiallelic and/or multilocus data
can be obtained by multiplying the probability in Eq. 20 for each
different rare allele. This is because the birth—death process
determining the frequency of each allele is independent. In other
words, if 7 is the number of rare alleles (from the same or from
different loci), and n;, is the number of copies of the zth allele in
population i, the probability of observing a configuration n =
Hni, naat, {nig, nant, .. {na,, na,}} is given by

L(T[n; ) = Pr(n|T; ) = 1]1 Pr(n, ., no T3 ). [23]

In the sections that follow, we will briefly analyze the behavior
of a maximum likelihood estimator of the divergence time T
based on Eq. 23 when applied to hypothetical and to real data.
Hereafter we will use the abbreviation RD to refer to the rare
alleles based estimator of divergence time.

Properties of the Estimator

In this section we will examine several hypothetical data sets to
illustrate qualitatively the effects of the parameters of the model
on the shape of the likelihood function.

Effect of Population Growth. Suppose first that the total
number of copies n; + n, of a rare allele sampled in two divergent
populations is 200, and that both populations have grown expo-
nentially. As one might expect, recent and ancient divergence
times will often result in similar and different numbers of copies
of arare allele in the descendent populations, respectively. In fact,
the estimated divergence time obtained by maximizing Eq. 23
increases when the difference between n; and n, is increased (see
Fig. 1a). This is, of course, the most important property of the
estimator, and suggests that the number of copies of a rare allele
contains some information about the time at which the popula-
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tion was subdivided. Fig. 1a also suggests that for very ancient
divergence events this information about the divergence time is
ultimately lost, since the different possible data configurations
become equally probable.

If the growth rate is decreased, the estimated divergence time
tends to increase (Fig. 1b). This effect is related to the increase
with the growth rate of the variance of the number of lineages in
a birth—death process (14). After population subdivision, the
same difference n; — n, is reached more rapidly in fast growing
populations.

The influence of the growth rate on the estimated divergence
time appears enormous when considering Fig. 1b. However, a
variation of the exponential growth rate by a factor of 5 has to be
regarded as enormous as well. For example, the final size of a
population which started growing 500 generations ago from an
initial size of 1,000 is expected to be either less than 15,000 or
more than 250 million, depending on whether the growth rate is
0.005 or 0.025. Assuming that the growth rates of the populations
can be at least roughly estimated, the variation of RD due to such
uncertainties may be much smaller. An increase of the population
growth rate from 0.015 to 0.025 in Fig. 16 (which is still a
substantial increase), for example, results only in a decrease of the
estimated divergence time from about 300 to 200 generations.

Effect of Mutation Age. Another potential source of uncer-
tainty for the estimator we propose arises from assumptions about
the ages of mutations. Allele ages are, in general, not known and
must be estimated from the data (for some human diseases it is
conceivable that historical information can be used). Different
methods exist for estimating allele age (12, 15, 16), but the
confidence intervals of these estimates are typically large.

The likelihood curves for several extreme situations in terms of
allele age serve to illustrate this point. In Fig. 24, the maximum
likelihood estimator RD, as well as its support interval (i.e., the
radius of curvature of the likelihood) do not seem to be strongly
affected by the mutation age. In other words, even if the assumed
mutation age varies from 500 to 1500 generations, the estimated
divergence time lies within the same region. It can also happen,
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FiG. 1. (@) The log-likelihood of four different data sets as a function
of the divergence time. In all cases (n1 + n2) = 200, fi = fo = 0.01, (T +
) = 1000, & = & = & = 0.02. The plotted numbers correspond to (11
— n2). (b) The log-likelihood as a function of the divergence time when
ny = 40, (n + nz) = 200, f = fo = 0.01, (T + ) = 1000. The plotted
numbers correspond to the growth rate, assuming & = & = &.
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FiG. 2. The log-likelihood as a function of the divergence time for
different ages (7" + ¢) of the mutant. In all cases, (11 + n2) = 200, fi =
f2=10.01. (a) & = & = & = 0.02, n; = 40. The dashed lines indicate the
2 log-likelihood units of support intervals. (b) & = & = & = 0.001,n; =
85. The model we used assumes that the mutation arose before the split
of the ancestral population in two descendent populations. For this
reason, some curves terminate carlier than others.

however, that very different assumptions about the age of the
allele result in very different estimates of the divergence time (Fig.
2b). In addition, as expected (and also shown by Fig. 2a),
assuming different allele ages affects the absolute value of the
likelihood. This behavior implies that, when more alleles are
simultaneously used to compute RD, a single allele whose age is
very poorly estimated could have a differentially strong effect on
the likelihood estimate of 7.

One possible solution to this problem is to simultaneously
estimate the divergence time and the allele ages. In this approach,
however, each additional allele would introduce an additional
parameter to estimate, thus reducing the power of the method.
Instead, we therefore decided to analyze the behavior of a
modified version of the estimator RD, hereafter called RDc. The
estimator RDc is based on the probability of an observed con-
figuration (n1, n2) conditioned on the sum (n; + 7). This
probability can be simply derived by using the rule of conditional
probabilities as:

Pr(ny, ny)
Pr(ny, naony + ns) = ;=1 . [24]

E Pr(i,n, + n, — i)
i=1

In principle, since the expected sum (7; + n,) depends mainly on
the allele age, conditioning the probability of a configuration on
this sum should reduce the influence of the allele age on the
likelihood of T.

The likelihood function based on Eq. 24 for the data sets in Fig.
2 has less curvature because most of the information in the total
number of copies is disregarded. The estimator RDc obtained by
conditioning proved to be largely insensitive to the age of the
mutation. For example, if RDc is used instead of RD, the three
data sets used in Fig. 2a have only a single likelihood function, and
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the two data sets in Fig. 2b have very similar likelihood functions
with the maximum value separated by only about 100 generations
(results not shown).

Finally, we used Monte Carlo simulation to examine how
uncertainty about the allele age might affect the estimators RD
and RDc. Five hundred samples of either 10 or 50 alleles from two
divergent populations were simulated, assuming moderately
small growth rates (§ = & = & = 0.005) and sampling fractions
(fi = f> = 0.005). In the first set of simulations (upper part of
Table 1), the age of each allele was fixed at 600 generations,
whereas in the second set (lower part of Table 1) the age of each
allele was randomly assigned from a uniform distribution with
lower and upper limits equal to 400 and 800 generations, respec-
tively. The simulated populations were assumed to have diverged
T = 200 generations ago, and the number of copies of each allele
was simulated by using the same birth—death model we used to
derive the likelihood function. When these parameters were used:
the average number of copies of each allele in each population
was 6.8 and 8.6 for the first and second sets of simulations,
respectively, and in both cases more than 10% of the alleles were
present in a single copy in a population. These are, of course,
unrealistically small numbers, but they allowed us to analyze large
number of samples. The calculation of the likelihood function for
a single data set is quite computationally intensive, especially for
the RDc estimator.

The maximum likelihood estimate of the divergence time was
obtained for each sample by using RD and RDc and assuming that
the growth rates and the sampling fractions were known, as well
as the age of each allele (600 generations) for the analysis of the
first set of simulations. In the analysis of the second set of
simulations, where the real age of the alleles varied between 400
and 800 generations, the RD and RDc were computed assuming
the same fixed age (800 generations) for each allele.

The results (Table 1) show that if the age of the alleles is known,
both RD and RDc are almost unbiased, with RD having a slightly
lower standard deviation (SD) than does RDc. On the other hand,
when the age of the alleles is not known, and estimates are
calculated by assuming that all alleles have an (incorrect) age
equal to that of the maximum possible age, RDc has consistently
less bias than RD, and also lower SD when more rare alleles are
considered. The higher SD of RDc when data sets of 10 alleles
were considered is mainly due to the fact that for a small fraction
of the samples the estimated divergence time was equal to the
assumed mutation age. This kind of edge effect disappeared when
more alleles were sampled.

Application to Cystic Fibrosis
As an example application of the method developed in this paper,
we considered three cystic fibrosis (CF) mutations in four human

populations from the paper by Estivill e al. (17). The three most
frequent CF mutations—namely AF508, G542X, and N1303K—

Table 1. Results of the simulations

Simulation set r Estimator  Mean SD Range
First 10 RD 188.3  121.6 0.0-600.0
RDc 196.1 1355 0.0-600.0
50 RD 194.8 49.6  56.0-314.2
RDc 197.0 554 32.0-3342
Second 10 RD 1231 1082 0.0-355.2
RDc 2127 1540 0.0-800.0
50 RD 130.7 829 0.0-246.2
RDc 212.7 578  72.1-3312

In the first set, alleles have all the same age of 600 generations, and
the divergence time is estimated assuming that the allele age is known.
In the second set, alleles can have any age between 400 and 800
generations with the same probability, and the divergence time is
estimated assuming that every allele has the same age of 800 gener-
ations. & = & = & = 0.005; fi = fo = 0.005; r = number of alleles;
actual divergence time 7 = 200.
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Table 2. CF data from four European populations

No. of CF chromosomes

2N
Population (X10) Total AF508 N1303K G542X
Sardinia 33 141 82 4 8
Italy 114.8 3,524 1,795 156 156
Denmark 10.6 678 591 7 4
Turkey 112.9 141 49 9 4

N is the present-day population size. Total refers to the number of
CF chromosomes in the sample. The numbers of CF chromosomes
with specific mutations are given in the last three columns.

will be used to estimate the pairwise divergence times between
Italy, Sardinia, Denmark, and Turkey. Since the model used to
derive the estimators assumes isolated populations, we expect that
gene flow processes would result in an underestimation of the
divergence time. This effect, which is probably minor for Euro-
pean populations that experienced reasonably low migration rates
(18), should of course be kept in mind.

The population data are shown in Table 2, and the results
provided by RD when the ages of AF508, G542X, and N1303K
were set to 50,000, 35,000 and 35,000 years, respectively (16, 17),
and the generation time is 20 years are shown in Table 3. Due to
the large number of AF508 copies, the computation of RDc using
the complete data sets would be unreasonably slow. Therefore,
we computed RDc assuming smaller sizes for AF508 samples in
Italy and Denmark. RD and RDc provided similar estimates (RDc
having larger confidence intervals), and we therefore report only
the results for RD.

Populations are assumed to grow exponentially with a rate of
0.005 per generation, which is compatible with an Upper Paleo-
lithic demographic expansion often suggested for European
populations (19-21). We also analyzed these data sets assuming
a growth rate of 0.025, which is equivalent to assigning a selective
advantage of 0.02 to CF carriers (lethal CF homozygotes are
ignored because of their low frequency). Heterozygote advantage
has long been proposed as an explanation for high prevalence of
CF among Caucasoids (22-24). Recent analyses, however, were
either unable to find evidence for such an effect (25, 26), or
showed analytically that the high prevalence of some deleterious
mutations is not unexpected in expanding populations (27).

The sample size, which is needed to compute the sampling
fractions f; and f; for each pair of populations i andj, was estimated
from the total number of CF mutants in the samples, assuming an
incidence of the disease of 1 in 2,500 newborns (28) in each
population. Finally, as we do not have any information about the
ratio s of the divergent populations at the split, we assumed a ratio
equal to the ratio between the present-day population sizes.

The results obtained when the population growth rate is fixed
to & = 0.005 for all populations (thus excluding a selective
advantage for CF carriers) suggest an Upper Paleolithic diver-
gence (about 15,000 years ago, on the average) between Denmark
and the Mediterranean populations (see Table 3). This result is
compatible with several previous genetical analyses of European
populations (29), suggesting a relatively recent divergence time
even between very distant populations, and also suggesting no
major impact in Northern Europe of Neolithic dispersion (30)
from the Middle East.

The comparisons among the Mediterranean populations pro-
vide estimates of the divergence time ranging from 0 (Italy vs.
Sardinia) to 18,000 years (Italy vs. Turkey). In contrast to the
comparison with the Danish population, however, very short
divergence times cannot be excluded for any pairs of Mediterra-
nean populations due to the large confidence intervals.

Finally, we note that, among all the comparisons, Sardinia and
Italy show the closest genetic relationship. Classical markers have
often identified Sardinians as a genetical outlier in Europe (31),
but the same pattern is not observed when the sequence of the
mitochondrial control region is considered (32). In a previous
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Table 3. Application of RD to data from the four
European populations

Divergence time estimates,
thousands of years

Sardinia Italy Denmark
Italy MLE 0.0
2SUI 0.0-11.4
3SUI 0.0-13.8
Denmark MLE 10.8 16.4
2SUI 5.6-17.7 12.5-22.1
3SUI 4.5-19.7 11.6-23.8
Turkey MLE 10.0 18.4 18.6
2SUI 0.4-17.2 0.0-28.4 14.2-24.7
3SUI 0.0-18.9 0.0-31.1 13.2-26.8

MLE is the maximum likelihood estimate of the divergence time.
2SUI is the interval of support computed as the divergence times at
two units of support from the best supported value; this interval
corresponds roughly to the 95% confidence interval. 3SUI is the
interval of support computed as the divergence times at three units of
support from the best supported value.

analysis of the relative frequencies of CF alleles in Italy, Rendine
et al. (33) found a certain level of divergence between Sardinians
and other Italian regions, which was, however, mainly due to the
private mutation T338I. All in all, it seems, therefore, that strong
drift effects and the appearance of some new mutations after the
relatively recent colonization of this island (around 9,000 years
ago) might explain the peculiarity of the Sardinians. Their
relationship with other Europeans, and especially with other
Italians, is, however, still evident.

The results we obtained by setting the growth rate to 0.025
(thus assuming a positive selective effect of CF mutations in
heterozygotes) gave a maximum likelihood estimate of the di-
vergence time between 1/4 and 1/3 of the previous estimates (of
course with the exception of the Italy-Sardinia comparison,
which resulted again in a divergence time of 0). In other words,
if the CF carriers had experienced a selective advantage of about
2% at any time in the past, our results would be consistent with
amore recent (Neolithic) divergence also between populations as
distant as Denmark and Turkey. Interestingly, these estimates
would support the analysis of 4 microsatellite markers by Chikhi
et al. (18), who found that the divergence time between pairs of
European populations (estimated from the variance in the num-
ber of repeats) never exceeded 6,000 years. Only the analysis of
other alleles or loci and more accurate estimates of the relevant
demographic and selection parameters will clarify this point.

We also analyzed the CF data sets assuming earlier ages for the
three mutations. Using linkage disequilibrium patterns, Serre et
al. (15) estimated the age of AF508 between 3,000 and 6,000 years,
and Kaplan et al. (34) suggested an age of 17,000 years for the
same mutation. We assigned the intermediate age of 10,000 years
to each allele in our data set. All population comparisons
provided a maximum likelihood estimate of the divergence time
equal to the age of the mutation. In principle, these estimates
cannot be excluded, and due to the large confidence intervals,
they are not incompatible with the results we obtained assuming
older allele ages. We note, however, that CF allele ages have been
estimated assuming a single panmictic European population.
Since the age of a nonrecurrent allele shared by two disjunct
populations must necessarily be older than the age of the popu-
lation subdivision event, it is possible that the estimated age for
some CF mutations is too recent.

Discussion

In this paper, we have derived some theory for a birth—death
process used to describe the population dynamics of rare alleles
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in a simple model of population divergence. This theory was used
to derive two maximum likelihood estimators, RD and its con-
ditional version RDc, of the time at which two recently isolated
subpopulations diverged from a common ancestral population.§

The appropriate data for applying these estimators are the
number of copies of one or more rare alleles at the same or
different loci sampled from the descendent populations. It is
assumed that each allele has arisen by nonrecurrent mutation in
the ancestral population. Data on rare disease mutations in
humans that are widespread in several populations seems there-
fore to be the most suitable for applying the method, since the
amount of information on such mutations that is available for
population studies is rapidly growing. For example, Estivill et al.
(17) recently reported the geographic distribution of almost
30,000 CF chromosomes, and equivalent databases for other
disease alleles are currently being developed.

In principle, the proposed method could also be applied to
alleles that are not rare if the population sizes are not regulated
by density dependence (e.g., in rapidly fluctuating island popu-
lations or in populations that are far from carrying capacity) (14).
In this case, the main assumption of the birth—death process
approximation (that individuals reproduce independently of one
another) is still valid, since individual birth and death rates do not
depend on population density (14).

Maximum likelihood estimators always require some knowl-
edge about the parameters used in the model; the divergence time
estimators proposed here are no exception. In particular, infor-
mation on the demography of the populations and on the age of
the alleles considered is needed to compute RD or RDc. One
might therefore suspect that computationally easier methods,
such as those based on Wright’s Fy; (5) or on the net number of
substitutions (1), should be preferred. These methods, however,
rely on strong assumptions about the demography of the popu-
lations, and if these assumptions are violated (which is often the
case), the results might be difficult to interpret. If reasonable
approximations of the parameters of the model are available, it
should often be the case that the estimators RD and RDc we
propose here will provide more accurate estimates of the diver-
gence time. Large-scale simulation studies are needed to evaluate
the overall performance of the different estimators of population
divergence times for a range of biologically reasonable demo-
graphic conditions.

Our qualitative analysis of the estimators suggests that the
influence of the demographic parameters on RD or RDc is
pronounced only if radically different demographic scenarios are
considered. In humans at least, historical or archaeological data
may often provide independent information about the demog-
raphy of a population (35). Alternatively, genetical data can
potentially be used to distinguish between stable and growing
populations, and, if necessary, to estimate the rate of exponential
growth of population (36-40).

The ages of alleles can also affect estimates of the divergence
time, even though our results indicate that this influence is
probably not great. If the age of the analyzed alleles can be
additionally estimated (e.g., see refs. 12, 15, and 16), the simpler
and most powerful estimator RD is preferable. When, however,
the age of an allele cannot be estimated, even approximately, and
the data consist of several alleles, each with relatively small
sample sizes, RDc should be preferred. The computation of RDc
is quite computationally intense, but this estimator proved to be
less affected by incorrect estimates of allele age than was RD.

Finally, when RD was applied to three CF mutations in four
European populations, we obtained results that appear consistent
and compatible with previous studies. In particular, the diver-

SA computer program to compute the divergence time estimators
proposed in this paper can be downloaded from the WWW site at the
URL http://mw511.biol.berkeley.edu.

Proc. Natl. Acad. Sci. USA 95 (1998) 15457

gence between Danish and Turkish populations was estimated to
have occurred between 15,000 and 25,000 years ago. On the other
hand, when three Mediterranean populations (Italy, Sardinia,
and Turkey) were compared, the CF data set we analyzed was
only able to exclude very old (>30,000 years) divergence times,
with an average estimate of about 10,000 years. All these esti-
mates, however, reduced substantially when a selective advantage
for CF carriers (22-24) is introduced. This result, unfortunately,
does not allow one to distinguish between several current hy-
potheses (see refs. 18, 41, and 42) on the relative contribution of
Paleolithic and Neolithic genes to the present European gene
pool. A better understanding of the selection process affecting the
CF locus is therefore needed, as well as the analysis of additional
rare mutations at additional loci. We expect the amount of these
kind of data available for human populations to increase rapidly
in the near future.
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