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A disease-associated mutation arises on a single chromosome such that alleles at 
linked markers are initially in complete linkage disequilibrium (LD) with the 
mutation. LD can be used as a tool for high-resolution mapping of the position of 
a disease mutation relative to a set of linked marker loci. When more than two 
linked marker loci are considered, developing a maximum likelihood approach is 
a challenging mathematical problem. To reduce the complexity, approximate and 
composite likelihood (CL) methods have been developed for multipoint LD 
mapping that use simplified models of population history, or of recombination, 
that ignore some of the statistical dependence among disease chromosomes and 
among marker loci. We describe the relationship among several composite 
likelihood methods for multipoint LD mapping, and suggest an alternative CL 
method that takes better account of the statistical dependence among marker loci. 
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INTRODUCTION 

Family-based linkage methods for mapping disease mutations have relatively low 
resolution; even when numerous extended families are available, the data are usually 
informative about recombination at a few hundred meioses at most [Boehrike, 19941. 
Thus, linkage methods typically provide estimates of map distance at a resolution of no 
more than 1 CM. Positional cloning requires a much narrower candidate region: 
alte~ative methods for high-resolution mapping of disease muta~ons are needed. One of 
the most promising methods, linkage disequilibrium (LD) mapping [Lander and Botstein, 
19861, takes advantage of the fact that a mutation arises on a single chromosome and is 
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initially in complete LD with alleles at nearby marker loci. LD between the disease 
mutation and a marker allele decays by recombination over time at a rate determined by 
the map distance of the marker from the disease mutation. Because the genealogy 
underlying a ~p~ation sample of c~omosomes that bear a disease mu~tion may be 
very large (much larger than a family pedigree), there is the opportunity for thousands of 
informative meiotic events to occur LD mapping can therefore provide much higher 
resolution than linkage mapping, narrowing the candidate region of a mu~tion down to 
0.0001 CM (roughly 100 kb), or less. Recently, rn~rn~ l~elihood (ML) methods have 
been developed for LD mapping using one, or two, linked di~leli~ markers IKaplan et 
al., 1995; ~~~a and Slatkin, 19981. Multipoint ML methods for LD mapping, on the 
other hand, present a number of technical d~~ulties that will likely be overcome only by 
improved computer programs that implement nume~~al te~~ques to evaluate 
likelihoods. The p~arne~~ mu~tipoint LD mapping methods developed thus far rely on 
approximations that allow rapid compu~tion of the likeliho~ [Te~lliger, 1995; Xiong 
and Guo, 1997; Graham and Thompson, 1998; Service et al., 19991. Several use a 
composite likelihood (CL) to approximate the exact likelihood (EL). Here we review 
existing CL methods, clarify their assumptions, and suggest an alternative CL method. 

METHODS 

Consider a sample of n chromosomes carrying a disease-associated allele, D. For 
each chromosome, L linked marker loci are typed. Let & be the allele observed at thejth 
marker locus on chromosome i, define Xi to be a vector of the alleles observed at all L 
markers on chromosome i (i.e., the multilocus haplotype of chromosome i), define X,j to 
be a vector of the alleles observed over all n chromosomes at a specific marker locus j, 
and let X = {Xi} be a matrix of the haplotypes of the n sampled chromosomes. Several 
parameters are needed to model the population of disease chromosomes. Let f be the 
time, in the past, when the mutation D arose, let& be the multilocus haplotype on which 
the disease mutation first arose, define ai to be the map posi~on of marker locus i relative 
to marker locus 1, where marker locus 1 is defined to be the locus closest to the telomere, 
and let a = (ai} be a vector of the map distances of the L - 1 remaining markers from 
marker 1. Let the distance of the disease mu~tion from marker 1 be aM and let p = fpjR) 
be a matrix of marker allele frequencies on normal chromosomes (those not carrying 
disease mutation D), where pjk is the frequency of the kth allele at marker locusj. We will 
assume that the allele frequencies p have been const~t since mu~tion D arose, but this 
assumption may be relaxed. Define B to be a vector of population demographic factors 
i~uen~ing the intra~lelic genealogy (sampling fraction, pop~ation growth rate, etc.). 
These parameters will be irrelevant for the CL methods considered in this paper, but may 
have an important influence on the EL. In the case of a single marker locus, the second 
subscript will be dropped for the variables and parameters with double subscripts. 

Exact Likelihood 

The likelihood of the haplotypes observed among a sample of disease chromosomes 
depends on their underlying genealogical relationships, the rates of recombination among 
markers, and the time since the mutation arose. Since the genealogy of the chromosomes 
can never be known with certainty, it is necessary to integrate over all possible 
genealogies to obtain a marginal likelihood which does not depend on a specific 
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genealogy. If we define a = {a,pJ&b} to be a vector of the unknown (nuisance) 
parameters, the likelihood may be written as 

Pr~I~,B;~,)=IPr(Xln,z;~,)~~(~l~), (1) 
where II jointly represents the genealogical tree and the coalescence times underlying the 
sampled disease chromosomes, the so-called intraallelic genealogy [Slatkin, 19961. The 
above integral is of general Lebesgue-Stieltjes form, and evaluating it would involve an 
integration over n - 1 coalescence times and a sum over n!(n - 1)!/2” - ’ distinct labelled 
genealogies. In principle, this can be done nume~cally using computer intensive 
methods, e.g., ~~a and Slatkin f19983 developed a simple Monte Carlo integration 
method for numerically evaluating this likelihood given a single diallelic marker locus. 

Composite Likelihoods 

though an EL calculation for arbitrary numbers of marker loci and alleles is 
possible in p~nciple by using eq~~on (I) and ev~uating a ~ghdimensional integral, 
this turns out to be difficult in practice. To rni~~ze compu~tion~ problems, 
approximate me~ods have been developed for calculating the l~elihood aimed at 
avoi~ng some of the ~culties posed by the above fo~ula. Most of these approaches 
involve the use of a CL. The l~elihood of a parameter 0 that completely determines the 
probabili~ ~s~bution of an ~dimensional discrete r~dom variable A = (Al,&, . . .Am} 
is given by the joint probabili~ dis~bution Pr(Al@). If the variables are inde~ndent the 
joint probability distribution is simply the product of the marginal probabilities 

Pr(A 10) = nPr(A, I@). (2) 

The CL is the product of the marginal likelihozs, which is the EL if the variables are 
independent, but is othenvise only an approximation to the EL. Computing the CL is 
usually much easier than computing the EL because the marginal probabilities are often 
functions of fewer parameters and are more easily derived. Several different composite 
likelihoods have been proposed for LD mapping that ignore either the non-independence 
among chromosomes resulting from their common genealogical history, or the non- 
independence among marker loci arising because recombination acts on pairs of 
haplotypes rather than independent pairs of markers. 

Type I composite likelihood 

The first CL method we consider treats chromosomes as independent, thus ignoring 
the effects of shared genealogy. This CL is the EL if the genealogy is a star-genealogy 
with all disease-associated chromosomes in the sample first coalescing to a shared 
haplotype precisely at time t in the past -ala and Slatkin, 19981. Terwilliger [ 19951 
appears to have been the first to employ this CL by considering a model in which the 
frequency, qi, of the ith marker allele on disease c~omosomes is 

qj = Pj +W-pj), (3) 
where pi is the frequency of the ith marker on normal chromosomes. If mutation D first 
arose on a ~~omosome bearing marker allele i, then h is the excess sequent of i on D- 
bearing ~~omosomes. It will be conve~ent to define a new variable, for use here and in 
later sections, Yi = &S(i+xj>, where s(f,$) = 1 if 4 = i, and 0 otherwise. Terwilliger 
[I9951 proposed the l~elih~d unction (4) below for es~mating h, given that the 
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mu~tion arose on a chromosome bearing marker allele i. We correct a ~ographical 
error in his paper and substitute Y and 2 for X and Y to be consistent with our no~tion 

where qi is given by equation (3), s = (1 - hlpi (for all j # i), yj is the number of disease 
chromosomes bearing allele j, Zj is the number of normal chromosomes bearing allelej, 
and m is the number of distinct haplotypes in the total sample of normal and D-bearing 
chromosomes. For a rare disease, the frequency of normal chromsomes in the sample 
bearing allele j is 5 = pj. The sample of normal chromosomes carries no information 
about h and may be subsumed into the irrelevant constant C. The parameter h, estimated 
by maximizing the above likelihood, does not allow one to directly estimate the rate of 
recombination per genera~on, 8, and instead provides a test of ass~iation (or 
disequilib~um) between mutation I> and marker i (i.e., h = 0 versus h > 0). Terwilliger 
[ 19951 suggested approximating h by (1 - 0)’ in the l~elih~d unction to estimate 8. 

It is possible to derive the expected value of h as a function of 0 and t, under an 
explicit model of recombination, and in this way obtain an approximate estimator of 6. 
Consider a chromosome j, descended from a single D-bearing chromosome that arose t 
generations ago. If 1) arose on a chromosome bearing allele i (in our notation X0 = i), the 
probability that j carries marker allele i is 

Pr(X, =ilx, =i,t,p;e)=pe)‘+p-(l-e)‘i~,, 
0 

= (l-&)(1-8)’ +pi. 
This is also the expectation of the frequency qi of allele i on disease chromosomes after t 
generations because the expectation of a sum (the sum of the disease c~omosomes 
bearing allele i, used in calculating the frequency of i) is equal to the sum of the 
expectations, regardless of whether the variables are independent. Thus, the e~ectation 
of the frequent of i does not depend on the precise model of population demography 
(the margins probabili~ depends only on the recombination process). The EL does 
depend on population demography (and evolutionary history). It is simple to solve for h 
as a linear function of qi 

h 4i Pi =--- 
l-P, l-P, l 

Substituting the expectation of qi into the above equation, the expectation of h is found to 
be (1 - 0)’ suggesting that Terwilliger’s approximation equates h with its expected value 
under a model of population recombination. The approximate likelihood derived by 
Terwilliger is actually a CL because the resulting likelihood may instead be written as 

Pr(XIX,,t,P;e)=CiiPr(X~ cx,,~,p;O f=l (6) 

This CL approximation recently has been used by others [e.g., Service et al., 19991. 
Xiong and Guo [1997] arrive at the same result by using a first-order Taylor series 
appro~mation for the EL in a model with explicit population demography. Treating the 
joint probability distribution of the marker alleles over n chromosomes as the product of 
the marginal probabili~ of the marker on each chromosome ignores the dependence 
among chromosomes due to shared genealogy. 

A digression is needed to clarify the relationship of these formulae to those of 
Rannala and Slatkin [ 19981, and others, who instead write equation (5) as 
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Pr(Xj =ilO,Xo =i)=e-s+(l-e-s)pie 
Note that (1 - 0)’ can be rewritten as exp{t log( 1 - 6)} and that, for small 8, the expression 
t log(1 - e) is approximated as -8 (a first-order Taylor series approximation). The 
expression exp (43) then approximates (1 - 8)’ when 8 is small. The same result may be 
obtained d irectly using a continuous time Markov process model of recombination 
[Rannala and Slatkin, 19981. In our earlier paper, we noted that maximizing the above CL 
to estimate 6 produces an estimator that is identical to the moment estimator 

l 

ii =i{log(l-p,)-log(Y* -np,)+log(n)). 

For most datasets, the CL presented above will provide confidence intervals (CIs) that are 
too narrow (Figure I), because it assumes independence where it does not exist and 
exaggerates the amount of information available from the data. Xiong and Guo [ 19971 
remark that for most datasets they examined, little difference is observed between first 
and second order approximations. This suggests a CL approach often may be sufficient. 

Multiple marker alleles 

One merit of the above CL approximation is that it produces a simple analytical 
expression that can be used to directly explore properties of the likelihood function, with 
the hope that the results obtained will generalize to the more complicated EL. One 
question that can be easily addressed is the effect that additional marker alleles have on 
estimation of the parameter 8. In particular, do we gain any information by explicitly 
including multiple alleles, or can the marker alleles not associated with the disease 
mutation simply be pooled? If no information is added by the additional allele counts 
then a sufficient statistic for estimating 8 in the case of a single marker locus is the 
number of sampled chromosomes, YO, bearing the marker found on the chromosome on 
which the disease mutation arose, X0 = 0 (see Casella and Berger [ 19901 for a discussion 
of sufficient statistics). In other words, the sample information from Xj # X0 carries no 

Fig. 1. Log-likelihood of a microsatellite marker in linkage disequilibrium with the diastrophic dysplasia 
mutation [Hastbacka et al., 19921, as a function of the recomination rate, 6 [for details of data treatment, 
see Rannala and Slatkin, 19981. Log-likelihoods are shown for both the CL method (equation (6)) and the 
EL method (obtained using our DMLE program). The difference between the CL and the EL is 
informative about how well the CL approximates the EL. In this case, the CL underestimates 8, in 
comparison to the EL, and provides a radius of curvature (confidence interval) that is too narrow. 
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additional information about 6. The probability of the marker allele counts in a sample of 
disease chromosomes, denoted as Y = ( YO,YI, . . . Y,_& using the CL approximation is 

and the marginal probabili~ of YO may be written 

pr(yo I p,w = l-21 
~!(n~Y~)! 

((1 - e-*)(1 - ~~)~~-‘~ x (e-* + (1 - e-*)~~}‘~. 

If Yo is a sapient statistic for 8, the monitions probabili~ ~s~bution of Y given Yo 
should be independent of 0. The conditional probability distribution is 

m-l ” 

= y&**.y ! pli 
mX - 

(n-Y())! (l-p,)“-y” ’ 

which does not depend on 8. It is more difficult to prove that YO is a sufficient statistic for 
estimating 6 under the EL, but we conjecture that this is the case. McPeek and Strahs 
[ 19991 suggested that existing likelihood methods are too simplistic because they 
consider only a diallelic locus. However, if Xi is a sufficent statistic for 8 then no 
information is lost by simply pooling the remaining (non-ancestral) alleles into a single 
class and using a diallelic method. This is common practice in gene mapping studies, and 
many disease mutations have been mapped by this approach. 

Type II composite 1ikeLihood 

The second CL method we consider ignores the dependence of recombination events 
among linked markers. For example, if two markers a and b are both ~en~ome~c to the 
disease mutation, D, with marker a closer to the mu~tion than marker b, any 
recombination events that occur in the interval D-a will also occur in the interval D-b. 
Recombination events between the markers and the disease locus are therefore not 
independent. The type II CL approach ignores this dependence among marker loci and 
multiplies the marginal probabilities of markers a and b to obtain the joint probability of 
the a-b haplotype. Terwilliger (1995) employed both a type I and a type II CL 
approximation in deriving a multipoint CL method using 

Pr~/a,X,,r,p;cr,)=iT4TPr(X, IX,,t,p;B,). 
j=l j=l co 

where Oj = 1% - ad . This greatly simplifies the problem, i.e., the only probability required 
is that for the single chromosome, single marker, haplotype (equation (5)). An alternative 
CL that takes account the dependence among marker loci, but not the genealogical 
dependence among chromosomes, uses 

PrXIa,X,,r,p;a,)=~Pr(X, I~,&d,P;~,). (8) . 
i=l 

An exact expression can be obtained for Pr& la,X&t,p;a& in the special case that the 
marker alleles at each locus are in linkage equiiib~~ on normal c~omosomes, but it is 
quite complex and will be given elsewhere. 
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Formulating an exact likelihood for multipoint LD mapping is a difficult 
mathematical problem. In this paper, we have described several approximate methods for 
single marker and multipo~t LD mapping that make use of composite likelihood (CL) 
approx~ations. We show that for a single marker locus, if the genealogical relationship 
among chromosomes is ignored (a type I CL), all available information about the map 
position, 0, of the disease mutation relative to the marker is contained in the number of 
disease c~omosomes that carry the marker allele found on the chromosome on which the 
disease~associated mutation first arose (this is a sufficient statistic). We also show that in 
the case of a single locus, the rnax~~-CL and method of moments est~ators of 8 are 
identical. The use of CLs undoubtedly involves a trade-off of statistical accuracy and 
ef~ciency for mathematical s~plici~ and rapid compu~bili~. Addi~onal studies are 
needed comparing the statistical perfo~ance of various CL, and EL, methods to 
determine how serious a cost is incurred by this trade-off. Although CLs offer a simple, 
approximate, approach for high-resolution LD gene ~pp~g, in our opinion it is still 
worthwhile to pursue exact likelihood approaches despite the additional ma~ematical 
and computational challenges. Exact methods will ultimately provide the most accurate 
and efficient techniques for high-resolution LD mapp~g, although probably not the 
fastest. 

This work was supported by NIH grant HG01988. DMLE software is available on 
the World Wide Web at h~://allele.bio.s~ysb.edu‘ 
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