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ABSTRACT
Recent breakthroughs in molecular technology, most significantly the polymerase chain reaction (PCR)

and in situ hybridization, have allowed the detection of genetic variation in bacterial communities without
prior cultivation. These methods often produce data in the form of the presence or absence of alleles or
genotypes, however, rather than counts of alleles. Using relative allele frequencies from presence-absence
data as estimates of population allele frequencies tends to underestimate the frequencies of common
alleles and overestimate those of rare ones, potentially biasing the results of a test of neutrality in favor
of balancing selection. In this study, a maximum-likelihood estimator (MLE) of bacterial allele frequencies
designed for use with presence-absence data is derived using an explicit stochastic model of the host
infection (or bacterial sampling) process. The performance of the MLE is evaluated using computer
simulation and a method is presented for evaluating the fit of estimated allele frequencies to the neutral
infinite alleles model (IAM). The methods are applied to estimate allele frequencies at two outer surface
protein loci (ospA and ospC) of the Lyme disease spirochete, Borrelia burgdorferi, infecting local populations
of deer ticks (Ixodes scapularis) and to test the fit to a neutral IAM.

EXTENSIVE variations in allele frequencies and mo- model organisms that can be readily cultured. It is well
lecular (DNA and protein) sequence polymor- known that most (90% or more) of the genetic diversity

phisms pervade the majority of natural populations. Al- within bacterial communities is lost through cultivation,
though genetic variation at its ultimate level can now however, and nutrient enrichment methods are highly
be quickly and accurately resolved by DNA sequencing, selective for the growth of only a small number of species
much of our ecological and evolutionary understanding (or genotypes of a species; see Table 1 in Amann et al.
of natural populations continues to be based on the 1995).
results of allele frequency analyses. Strong natural se- With the advent of new molecular techniques, such
lection, for example, can distort the allele frequency as PCR and in situ hybridization (Amann et al. 1995;
distribution at a locus resulting in departures from von Wintzingerode et al. 1997), a previously unknown
Hardy-Weinberg equilibrium and from the Ewens level of microbial diversity has been uncovered in envi-
sampling distribution (Ewens 1972; Manly 1985), ronmental and clinical microflora that challenges tradi-
which describes the samples of alleles expected when tional views on microbial ecology and pathogenicity (see
mutations follow an infinitely many neutral alleles recent reviews by Hugenholtz et al. 1998; Relman
model (IAM). Classical tests of neutrality such as the 1999). Using molecular typing methods it is now also
Ewens-Watterson test have increased our understanding possible to survey the genetic variation of a bacterial
of the patterns of selection among regions of the ge- species in its natural environment. Thus far, however,
nome and among populations. formal statistical methods have been lacking for estimat-

Methods of allele frequency analysis developed for ing allele frequencies using the kinds of data obtained
use in studies of animal and plant populations are, in in studies of microbial diversity by molecular methods.
principle, applicable to bacterial species as well. Unlike In this article, we attempt to redress this problem by
animal or plant populations, however, it has only re- developing some new statistical methods for analyzing
cently become technically feasible to perform in situ these emerging data.
sampling to examine the genetic variability of bacteria

In recent population genetic studies of Borrelia burg-
in their natural (uncultivated) environment. Classical

dorferi, the spirochete that causes Lyme disease, Borreliastudies of bacterial population genetics (see review by
genes were directly amplified from infected ticks (IxodesSelander et al. 1994) have therefore focused on a few
scapularis) using a nested PCR design (Guttman et al.
1996). The amplified genes were subsequently surveyed
for sequence variations using cold single-strand confor-
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Borrelia (Guttman et al. 1996; Qiu et al. 1997; Wang of these carry allele j for all 1 # j # k is specified by
the multinomial distributionet al. 1999). In this work, the number of bands of alleles

was counted directly from electrophoretic gels to esti-
mate the frequencies of various SSCP alleles in a lo- Pr(yi|Yi, Yi $ 1, p) 5 1 Yi

yi1yi2 . . . yik
2p

k

j51

pyijj , (2)
cal Borrelia population (Qiu et al. 1997; Wang 1999).
This method of direct counting can produce biased where yi 5 {yij} is a vector of the number of copies of
estimates of the population allele frequencies, however, each allele among the Yi microbes infecting individual
tending to underestimate the frequencies of common i and Yi 5 Rk

j51 yij. A well-known result that is useful to
alleles and to overestimate those of rare alleles. The consider in the context of this problem is the genesis
result is an inferred frequency distribution that appears of a multinomial distribution as the joint distribution of
more even than the actual frequency distribution (see the number of copies of each of k independent Poisson
Methods and Materials in Qiu et al. 1997). random variables, the jth of which has the parameter

In this study, bacterial allele frequencies are estimated lpj, conditioned on their sum. If yij is now the number
more accurately by deriving an explicit maximum-likeli- of copies of the jth type in the ith replicate population
hood estimator (MLE) that takes account of the trans- formed by this process, the probability distribution is
mission process of bacteria to hosts and the host sam-
pling process. Our approach was to formulate the Pr(yi|Yi, Yi $ 1, p, l) 5

Yi!
lYie2lp

k

j51

(lpj)yije2lpj

yij!
. (3)

sampling distribution of the presence-absence data as
a function of the population allele frequencies. Allele

Note that (3) algebraically reduces to (2) in this way:
frequencies could then be estimated directly using ana-
lytical maximum-likelihood techniques. The method Yi!

lYie2lp
k

j51

(lpj )yije2lpj

yij!
5 1l

R
k
j51yije2lR

k
j51pj

e2llYi 2should be generally applicable to problems involving
the estimation of population allele frequencies from
presence-absence data; such data sets are becoming in- 3

Yi!

pk
j51 yij!

p
k

j51

p yij
j

creasingly common, particularly in studies of bacterial
genetic diversity using molecular techniques. If one is

5 1 Yi

yi1yi2 . . . yik
2p

k

j51

p yij
j .studying gene frequencies in populations of free-living

microbes, rather than parasitic ones, the model can
still be used but is instead a model of the microbial The joint probability distribution of yi and Yi is then
substrate sampling process. For example, samples of

Pr(yi, Yi|p, l, Yi $ 1) 5 Pr(yi|Yi, p) 3 Pr(Yi|Yi $ 1)equal amounts of soil might be collected from different
regions and the microbes in each sample genetically

5
1

(1 2 e2l)p
k

j51

(lpj )yije2lpj

yij!
. (4)characterized; in this case, the samples are equivalent

to hosts and the number of infecting microbes is the
If the number of microbes of each allelic type that infectpopulation of bacteria in each sample.
the ith host was directly observed, (4) would be the
likelihood of the observations and the MLEs of the allele
frequencies among microbes would be just the frequen-

THEORY
cies observed in the hosts. In most cases, however, the

Estimation of allele frequencies in microbial popula- observations are actually the numbers of hosts infected
tions: Consider a sample of n hosts infected with a partic- with one or more microbes of each allelic type. It is

then natural to represent the observations on the ithular species of parasitic microbe. Let Yi be the number
infected host as the binary vector Xi 5 {Xi1, Xi2, . . . , Xik},of microbes that infect the ith host, where 1 # i # n.
where Xij indicates whether the jth microbial allele isIf the rate of infection of hosts by the microbe is low
observed in the sample of microbes from the ith infectedthen we can model the distribution of the number of
host. Accordingly, we defineinfecting microbes per host as Poisson with parameter

l, where this is the expected number of infecting mi-
crobes per host. If we consider only the infected hosts, Xij 5 51 if allele j is present

0 otherwise.
the distribution of Yi $ 1 is

The observations are then given by the matrix X 5 {Xij}.
The probability that one or more microbes of allelicPr(Yi|Yi $ 1, l) 5

e2llYi

(1 2 e2l)Yi!
. (1)

type j infect the ith host is

Let p 5 {pj } be a vector of the allele frequencies in the
Pr(yij $ 1) 5 o

∞

l51

(lpj)le2lpj

l !
5 (1 2 e2lpj), (5)microbial population, where pj is the frequency of allele

j, there are k alleles in total, and Rk
j51 pj 5 1. If host i is

infected by Yi microbes, the probability that 0 # yij # k and the probability of observing no microbes of allelic
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type j is e2lpj. Because Equation 4 is a product of indepen-
p̂i 5

log(1 2 qi)

ok
j51log(1 2 qj)

.dent Poisson random variables, the probability of Xi is

Applying a Taylor series expansion to represent loga-Pr(Xi|l, p) 5
1

(1 2 e2l)p
k

j51

hXij(1 2 e2lpj) 1 (1 2Xij)e2lpjj.
rithms in the numerator and denominator as polynomi-

(6) als, we can rewrite the above equation as

Each infected host is an independent observation from
p̂i 5

qi 1 1⁄2q2
i 1 1⁄3q 3

i 1 . . .

1 1 1⁄2ok
j51 q 2

j 1 1⁄3ok
j51 q3

j 1 . . ..this process and the probability of X is then

One can see from this representation that, if the samplePr(X|l, p) 5
1

(1 2 e2l)np
n

i51
p

k

j51

hXij(1 2 e2lpj) 1 (1 2 Xij)e2lpjj.
(presence-absence) allele frequencies are perfectly uni-

(7) form so that qi 5 1/k, then the above equation reduces
to p̂i 5 qi 5 1/k and the sample (presence-absence)From (7) we obtain the log-likelihood of the observed
allele frequencies are MLEs of the population alleledata as
frequencies. In other words, the correction provided by

, 5 2n log(1 2 e2l) o
n

i51
o

k

j51

log[Xij(1 2 e2lpj) 1 (1 2 Xij)e2lpj]. the MLE will have little effect when population allele
frequencies are very uniform. If we let S 5 1⁄2Rk

j51q 2
j 1(8) 1⁄3 Rk

j51 q 3
j 1 . . . , then for alleles in high frequency,

The log-likelihood then simplifies to
p̂i ≈ qi 1 S

1 1 S
,

, 5 2n log(1 2 e2l) 1 o
k

j51

hz j log(1 2 e2lpj) 2 (n 2 zj)lpjj,
which is strictly greater than the uncorrected estimate(9)
qi if qi , 1, and for alleles in low frequency,

where zj is the number of hosts sampled for which the
microbes display allele j. To maximize the likelihood p̂i ≈ qi

1 1 S
,

with respect to parameter pj, we differentiate the log-
likelihood, set this partial derivative to equal zero, and

which is strictly less than than the uncorrected estimatesolve for pj. The derivative of l taken with respect to
qi if qi . 0. The MLEs will then down-weight populationpj is
allele frequency estimates for alleles that are in low
frequency in the sample and up-weight the estimates],

]pj

5
zjle2lpj

1 2 e2lpj
2 (n 2 zj)l. (10)

for those alleles in high frequency as intuition suggests
they should.

Setting Equation (10) equal to zero and solving for pj Test of the neutral infinite allele model: Ewens
gives the MLE, (1972) showed that, under the infinitely many neutral

alleles model of mutation and drift, the observed num-
p̂j 5 2

1
l

log1n 2 zj

n 2. (11) ber of alleles, k, in a sample of size j from a haploid
population of effective size Ne and with mutation rate
m is a sufficient statistic for estimating the parameterBecause the allele frequencies are constrained to sum
u 5 2Nem. Ewens provided the following implicit for-to 1 the MLE of l is
mula, which can be solved numerically to estimate u for
given values of k and j (i.e., his Equation 5):l̂ 5 2o

k

j51

log1n 2 zj

n 2. (12)

k 5
û

û
1

û

û 1 1
1 . . . 1

û

û 1 2j 2 1
. (13)The estimator of pj given by Equation 11 does not take

account of the uncertainty in the parameter l. In most
In the case of the bacterial samples described above,cases, l is unknown and is estimated from the data using
however, j, which is the total number of bacteria sam-Equation 12. A more rigorous statistical approach would
pled, is unknown because the numbers of bacteria in-be to specify a prior probability density for l and to
fecting each tick are unobserved random variables. Thethen integrate over this prior. The marginal likelihood
total sample size for the samples of bacteria from tickscould then be used to estimate pj. Alternatively, one
can be written ascould maximize the likelihood of the parameters p and

l jointly.
j 5 o

n

j51

Yi. (14)It is informative to consider the mathematical proper-
ties of Equation 11 for alleles in high, low, or uniform
frequency. If we let qi 5 zi/n be the frequency of hosts Since the number of bacteria infecting each tick is as-

sumed to follow an independent Poisson process withinfected with microbes carrying allele i, then we can
write the MLE of pi as common infection rate parameter l, the distribution of
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the above convolution is also Poisson but with parameter Figure 1, A and B, that the relative bias of the estimated
allele frequencies falls between 215 and 110% undernl. If we estimate l̂ using the techniques outlined above,

an approximate estimate of u can be obtained by substi- the various ranges of allele frequencies and l values
examined. The accuracy of the gene frequency esti-tuting l̂n in place of j in (13) and solving for u.

Using this estimate of u, we can compare the expected mates is improved by increasing the sample size, n, when
l is large relative to the number of alleles (Figure 1B).allele frequencies under the neutral IAM with the MLEs

of the allele frequencies for the bacteria to examine the However, when l is small (e.g., l 5 2), the accuracy is
not improved by sampling more hosts (Figure 1A). Asfit of these data to the neutral IAM. The population

frequency distribution of alleles is given by the Poisson- expected, the variance of all estimates is reduced when
the sample size is increased (e.g., Figure 1, C and D).Dirichlet distribution (see Griffiths 1979). The mar-

ginal expectation of the frequency a(r) of the r th most The evenness of the gene frequency distribution has
a strong effect on the bias and variance of the allelecommon allele is
frequency estimates. The best estimates (meaning those
with smallest bias and variance) of allele frequencies areE(a(r)) 5#

∞

0

(uE1(y))r21

(r 2 1)!
exph2(y 1 uE1(y))jdy, (15)

achieved when the actual allele frequencies are evenly
distributed, even when the sample size is small (seewhere
Figure 1, A and B, at the point p 5 0.3333, where the
distribution is even). Estimates of l (the average num-E1(y) 5 #

∞

y

e2x

x
dx (16)

ber of bacterial lineages infecting a host) are more bi-
ased and have higher variance than estimates of allele

is the familiar exponential integral. Equation 15 can be frequencies, especially when l is small. For example,
easily evaluated using numerical methods. To graphi- the method overestimates l regardless of sample size,
cally evaluate the similarity of the bacterial allele fre- n, and the shape of gene frequency distribution, p, when
quencies to those expected under the neutral IAM, we the true value of l is 2.0 (the estimates ranged from
plotted the MLE estimates of allele frequencies vs. those 2.5 to 3.6, data not shown).
expected under the neutral IAM with û estimated by
using the observed number of alleles and the expected

EXAMPLE: LYME DISEASEsample size estimated as nl̂ and numerically solving
Equation 13 above to obtain the MLE of u. We have applied the method to two published studies

of local populations of B. burgdorferi, the bacterial agent
of Lyme disease. Lyme disease is transmitted mainly

MONTE CARLO SIMULATION STUDY
by Ixodes ticks and is the most prevalent vector-borne
disease in the United States (CDC 1997). In endemicMonte Carlo simulations were used to examine the

bias and variance of the maximum-likelihood estimators regions of Lyme disease, the ticks, vertebrate hosts, and
patients are often infected with multiple genospeciesof l and p. From a hypothetical population of bacteria

with k different alleles (frequencies of which are p1, p2, or strains of B. burgdorferi (Demaerschalck et al. 1995;
Pichon et al. 1995; Guttman et al. 1996). Population. . . , pk, respectively), we simulated the sampling of n

infected hosts. The number of bacterial lineages in- genetic analyses of B. burgdorferi suggested that the high
level of local genetic diversity observed in this speciesfecting each host is assumed to be Poisson distributed

with a mean of l and the observations are the presence may be maintained by frequency-dependent selection
mediated by host immune responses to spirochete in-and absence of individual alleles in each infected host.

From these n independent simulated host samples, fection (Qiu et al. 1997; Wang et al. 1999). One piece
of evidence for diversifying selection came from theMLEs of the bacterial population allele frequencies, p,

and l, were calculated using Equations 11 and 12. The consistently significant results of Ewens-Watterson tests
of frequency distributions of SSCP alleles sampled fromprocess of sampling n infected hosts from the bacterial

population was simulated 1000 times and the bias and local populations of B. burgdorferi (Qiu et al. 1997; Wang
et al. 1999).variance were calculated for each estimator.

The results shown in Figure 1 are based on simulated In light of our study, the method of gene frequency
estimation used in previous studies of Borrelia needs tosamples from a hypothetical bacterial population with

k 5 3 distinct alleles with sample sizes of n 5 100, 500, be reevaluated. This is because in the earlier studies
frequencies of SSCP alleles were estimated by directly1000, and 5000 simulated infected hosts. Deviations (in

percentage) of the estimated values of the allele fre- counting the number of bands (distinctive for each al-
lele) observed on electrophoresis gels. Since the pres-quencies from their actual values (the bias; Figure 1, A

and B) and the variance of the estimated allele frequen- ence of a pair of SSCP bands on a gel indicates the
presence of a particular allele in a tick regardless of thecies (Figure 1, C and D) are plotted against actual fre-

quency of one of the alleles (frequencies of the re- actual number of microbes infecting the tick, the direct
counting method tends to underestimate the frequen-maining two alleles are kept equal). It can be seen from
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Figure 1.—Results of simulation study of the per-
formance of maximum-likelihood estimators of
gene frequencies (p) and number of infecting bac-
teria (l). A hypothetical microbial population with
k 5 3 distinct alleles infecting a host population
was simulated. The frequency of one allele (p1)
was successively set to be 0.1, 0.2, . . . , 0.9 while
frequencies of the remaining two alleles (p2 and p3)
were kept equal (these frequencies sum to unity).
Samples of infected hosts of size N 5 100, 500,
1000, and 5000 were simulated and the frequency
of each allele was estimated using Equations 13 and
14. The bias of (p̂1) and the variance of p̂ were
obtained from 1000 replicate simulations of the
sampling process. The standardized bias of p̂1 was
calculated using the formula (p̂1 2 p1)/(p1), where
p1 is the (known) true value of p1 used in the simula-
tions (A and B). As well, the variance of p̂ was
calculated for the simulated data sets (C and D)
and these values are plotted against p1. The individ-
ual parts are the bias of p̂1 (A and B) and variance of
p̂ (C and D) when the average number of microbial
lineages infecting hosts is either low (l 5 2, A and
C) or high (l 5 10, B and D).

cies of common alleles and overestimate those of rare of B. burgdorferi (Qiu et al. 1997; Wang et al. 1999) are
reproduced in Table 1 and allele frequencies on twoones. Allele frequencies estimated by using the direct

counting method would thus tend to appear more uni- outer surface protein loci were reestimated using the
maximum-likelihood method. It can be seen that inform (having lower values of homozygosity, F) and

would bias the results of the Ewens-Watterson test in each population the corrected frequencies are less
evenly distributed than the uncorrected ones (Table 1).favor of balancing selection.

Molecular data from surveys of two local populations Nonetheless, the allele frequency distributions in both
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Figure 1.—Continued.

populations are still more even than expected under a To investigate whether such bias could account for the
deviation of estimated bacterial gene frequencies fromneutral evolutionary model (compare the first and sec-

ond columns of the histograms shown in Figure 2). those expected under neutrality, we also calculated the
expected frequencies using estimates of l that were one-A more uniform frequency distribution than expected
fifth as large as the MLEs. These expected frequenciesunder neutrality can be due to either evolutionary fac-
are shown in the third column of Figure 2 and remaintors like balancing selection (Qiu et al. 1997; Wang et
very different from the observed frequencies (columnal. 1999) or recent population growth. To construct the
1). These results suggest that the deviation of gene fre-expected frequencies under neutrality that are given in
quencies from the neutral expectation that we observedthe second column of the histograms of Figure 2, the
are not an artifact of bias in estimates of u.population parameter u 5 2Nem was estimated as de-

scribed above using l̂n as the approximate sample size.
Estimates of u obtained in this way were quite large for

DISCUSSIONboth loci examined, u 5 0.43 for ospA and u 5 2.48 for
ospC. If we assume that the mutation rate is on the In this study, a maximum-likelihood method for esti-
order of m ≈ 1028, this suggests that the corresponding mating gene frequencies in a bacterial population based
estimates of the effective population size will be 1.2 3 on the presence and absence of alleles in infected hosts
108 and 2.2 3 107, respectively. Either a large population is developed. The method is particularly useful for ap-
of hosts or potential subdivision of bacterial populations plication to the data generated by the increasingly
among hosts (and regions) could account for this large common studies of bacterial populations that use non-
effective population size. culture-based molecular detection techniques. Addi-

One possible source of error for estimates of u are tionally, a graphical method based on the neutral distri-
the estimates of l used in the calculation; these might bution of allele frequencies has been developed to test

for the presence of natural selection (or a recent popula-be too large due to the upward bias of the MLE of l.
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Figure 2.—Comparison of estimated
allele frequencies with the expected
frequencies under neutrality for outer sur-
face protein (osp) alleles in natural popu-
lations of B. burgdorferi. (A) Frequencies
of four SSCP mobility classes of ospA in a
population of 367 infected adult I. scapu-
laris ticks. The maximum-likelihood esti-
mate of the average number of bacterial
lineages infecting a tick, l̂, is z1.50, which
gives a total sample size of 549 ospA lin-
eages. û was obtained using Equation 13
on the basis of either the estimate l̂ (in
which case û 5 0.426) or one-fifth the
value of l̂ (in which case û 5 0.776). Ex-
pected allele frequencies under neutrality
in both cases were obtained using Equa-
tion 15. (B) Frequencies of 11 major
groups of alleles at ospC in a population
of 40 infected ticks. For these data, the
estimate of l is l̂ 5 2.09, which gives an
estimate of the sample size to be 84 ospC
lineages. Using this estimate of l̂, the esti-
mate of u was û 5 2.48. If instead a value
of 1/5 l̂ was used, we obtained û 5 4.66.
Expected allele frequencies under neu-
trality in both cases were obtained using
Equation 15.

tion expansion), using bacterial gene frequencies. This infecting the definitive (vertebrate) hosts. For other
microbes, the source population about which inferencesmethod provides a test of neutrality for bacterial genes

assayed using SSCP that is analogous to the classical test are being made will differ. For example, if one is instead
studying populations of free-living soil bacteria (ratherbased on the Ewens (1972) sampling distribution. Both

tests are sensitive to recent population expansions, than a parasite), collects n independent soil samples of
equal mass (rather than n hosts), and then determineswhich can cause a rejection of the neutral hypothesis

even in the absence of selection. the alleles present in each sample, an application of
our method will provide estimates of the allele frequen-Model of microbial sampling: The basic probability

model that we have developed (and used to derive our cies for the population of soil microbes over the entire
region of sampling. Our model also assumes that noestimators) in this article assumes that hosts are col-

lected and examined for the presence (or absence) mutations occur within the sampled hosts; this assump-
tion is reasonable for short-lived hosts harboring smallof microbes carrying particular alleles. Implicit in the

model is an assumption that hosts are infected, at ran- populations of bacteria (, z106 bacteria per host). Fi-
nally, the model assumes that there is no loss of bacterialdom, from a “source” population of microbes. Our

methods estimate the allele frequencies in this source lineages (due to genetic drift, for example) within hosts
following infection. If these assumptions are satisfied,population from which microbes are sampled during

the host infection process. In the case of B. burgdorferi, it is not necessary to explicitly model the within-host
population dynamics. The approach could be extendedthe source population is the population of microbes
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to allow more complex within-host microbial dynamics, A second important consequence of bacterial clon-
ality is the high degree of linkage disequilibrium thatmutation, and drift.

Prospects for new statistical methods: The methods exists among various loci (Dykhuizen and Green
1991). As a result of linkage disequilibrium, naturaldeveloped in this article represent a reasonable first

solution to this problem. The maximum-likelihood selection at one locus can have a genome-wide effect,
causing population genetic dynamics such as selectivemethod that we have used to estimate allele frequencies

has some potential disadvantages, however. The most sweeps (Cohan 1994). For highly clonal bacterial spe-
cies such as B. burgdorferi (Dykhuizen et al. 1993), it issignificant disadvantage of the likelihood approach is

that it provides only point estimates of the allele fre- therefore not surprising that balancing selection ap-
pears to manifest itself at multiple loci (e.g., ospA andquencies. Often estimated allele frequencies will subse-

quently be used to test other hypotheses (in this study, ospC; see Wang et al. 1999). A test of neutrality applied
to one gene, therefore, can potentially detect selectionfor example, we used them to test for neutrality of al-

leles). A technically superior approach would be to cal- acting anywhere in the bacterial genome.
To summarize, population genetic studies of bacterialculate the Bayesian posterior probability density of the

allele frequencies (see, for example, Rannala and species differ from those of plant or animal species in
at least two important aspects. First, gene frequenciesMountain 1997). This posterior density could then be

used in subsequent hypothesis tests involving the allele in a bacterial population most accurately reflect the
relative abundance of bacterial strains existing in a pop-frequencies and would take account of the fact that

the allele frequencies are uncertain (they have been ulation; they are poorer measures of relative frequencies
of individual bacterial cells that differ in their genotypes.estimated from the data). A numerical Bayesian ap-

proach (using Markov chain Monte Carlo methods, for Second, the genome-wide population genetic dynamics
of bacterial species can often be approximated by popu-example) would also allow the method to be more easily

extended to allow for increasingly complex models of lation genetic dynamics at a single locus (e.g., changes
of allele frequencies due to natural selection) due tothe host infection process, etc.

Bacterial clonality: Bacteria are asexually reproducing the extensive linkage disequilibrium among loci across
the bacterial genome.organisms and the rate of recombination between geno-

types is much lower than in sexually reproducing organ- In situ quantitative methods: Over the past decade,
various molecular methods aimed at quantifying in situisms. One consequence of an asexual mode of reproduc-

tion and clonal population structure is that bacterial cellular abundance of bacteria (such as quantitative PCR
and quantitative hybridization) have been developedgenotypes or strains are relatively stable genetic identi-

ties (for recent reviews of bacterial clonality see Sel- (Orlando et al. 1998). Because these techniques can
directly quantify the number of gene copies in biologicalander et al. 1994; Maynard Smith 1995; Guttman

1997). Population genetic (evolutionary) processes samples, it is tempting to use molecular quantitative tech-
niques to estimate gene frequencies in bacterial popula-(e.g., genetic drift and natural selection) in bacterial

species are thus best described using units of individual tions experimentally. However, as discussed above, the
total number of cells that make up each bacterial strainbacterial lineages rather than the individual cells consti-

tuting a bacterial population. A bacterial lineage is de- in a population may not be as relevant a population
genetic parameter as the number of independent bacte-fined here as bacterial cells asexually propagated (e.g.,

by binary fission) from a single ancestral bacterial cell. rial lineages that infect a host. It is therefore neither
necessary nor proper to estimate bacterial gene frequen-Different bacterial lineages, like different individuals in

plant or animal populations, can be of the same as well as cies from, for example, the number of gene copies giv-
ing rise to the individual SSCP bands, using molecularof different genotypes or strains. Therefore, individual

cells in a bacterial population are best considered to quantification methods. Using the present methods for
estimating gene frequencies in bacterial populations, itbe a mixture of genotypically identical (or different)

lineages rather than individual organisms as in an ani- is only necessary to obtain information on the presence
and absence of alleles in infected hosts using the muchmal or plant population.

Our analysis of B. burgdorferi supports the idea that the simpler qualitative molecular detection techniques.
Apart from these theoretical considerations, molecularnumber of bacterial lineages infecting a host is usually

small. Presumably this is because the hosts are often quantitative methods also suffer from experimental
complications such as preferential primer or probe an-initially infected with a small number of bacterial cells

and an even smaller number of bacterial lineages. For nealing to templates of certain haplotype sequences,
natural variations in DNA or RNA copy numbers in aexample, the average number of Borrelia lineages in-

fecting a tick (i.e., the parameter l) was estimated to be genome, and formation of chimera molecules in PCR
amplifications (Amann et al. 1995; von Wintzingerodez1.5 as determined by ospA SSCP types in one population

and 2.1 as determined by ospC SSCP types in another et al. 1997).
Effects of sample size and interaction among geno-population (Table 1). These low estimates of the number

of infecting lineages lend support to the clonal view of types: The results of our Monte Carlo computer simula-
tions suggest that the accuracy and variance of maxi-bacterial population genetics outlined above.
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