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Abstract During the last decade, hundreds of genes that harbor mutations causing simple Mendelian disorders

have been identified using a combination of linkage analysis and positional cloning techniques. Traditional
approaches to gene mapping have been largely unsuccessful in mapping genes influencing so-called ‘com-
plex” genetic diseases, however, because of low power and other factors. Complex genetic diseases do not
display simple Mendelian patterns of inheritance, although genes do have an influence and close relatives
of probands consequently have an increased risk. These disorders are thought to be due to the combined
effects of variation at multiple interacting genes and the environment. Complex diseases have a significant
impact on human health because of their high population incidence (unlike simple Mendelian disorders,
which tend to be rare). New techniques are being developed aimed specifically at mapping genes conferring
susceptibility to complex diseases. A project aimed at mapping genes influencing susceptibility to a com-
plex disease may be undertaken in several stages: establishing a genetic basis for the disease in one or more
populations; measuring the distribution of gene effects; studying statistical power using models; carrying
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out marker-based mapping studies using linkage or association. Quantitative genetic models can be used
to estimate the heritability of a complex (polygenic) disease, as well as to predict the distribution of gene
effects and to test whether one or more quantitative trait loci (QTLs) exist. Such models can be used to
predict the power of different mapping approaches, but are often unrealistic and therefore provide only
approximate predictions. Linkage analyses, association studies and family-based association tests are all
hindered by low power and other specific problems. Association studies tend to be more powerful but can
generate spurious associations due to population admixture. Alternative strategies for association mapping
include the use of recent founder populations or unique isolated populations that are genetically homo-
geneous, and the use of unlinked markers (so-called genomic controls) to assign different regions of the
genome of an admixed individual Lo particular source populations. Linkage disequilibrium observed in a
sample of unrelated affected and normal individuals can also be used to fine-map a disease susceptibility
locus in a candidate region. New Bayesian strategies make use of an annotated human genome sequence

to further refine the position of a candidate disease susceptibility locus.

Complex diseases, according to Lander and Schork!!! are
those that “do not show perfect cosegregation with any single
locus owing to such problems as incomplete penetrance, pheno-
copy, genetic heterogeneity, and polygenic inheritance.” Com-
plex diseases are probably mainly polygenic, although many
single locus Mendelian disorders also display one or more of
these features. For example, for single locus disorders, incom-
plete penetrance can arise if environmental or developmental
stochasticity leads to different outcomes for individuals with
identical genotypes.!?) Incomplete penetrance is more compli-
cated in the polygenic setting; the effect of no single gene may
be sufficient to cause a disease phenotype and therefore the
degree of penetrance for any particular locus is affected by the
alleles segregating at other disease loci in a family, or a popu-
lation. For a given disease susceptibility locus, individuals dis-
playing the disease phenotype but lacking a disease mutation
at that locus (phenocopies) may arise due to the effects of other
genes, or the environment. Genetic heterogeneity can include
both multiple disease genes (locus heterogeneity) and multiple
mutations within a disease gene (allelic heterogeneity).

In this review, we focus on methods for mapping suscepti-
bility loci for diseases arising from the combined effects of two
or more genes, each with a potentially small (marginal) effect
on the phenotype, as well as possible environmental effects. It
is entirely possible that many traits arc greatly affected by
genes, but that cach gene involved has a relatively small effect
onits own. Thus, although the heritability of a trait may be high,
the causative loci may be difficult to identily. A brief introduc-
tion is given to quantitative genetics, the branch of population
genetics most useful for modeling such diseases. As well, the
expected efficiency of different gene mapping strategies, using
cither linkage or association methods, is explored in the context
of these models. Linkage mapping methods use information
from recombination within families to identify markers cos-
egregating (and presumably genetically linked) with a disease
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locus. Association mapping methods examine marker alleles in
affected and normal individuals to detect differences of allele
frequencies between the two groups that may indicate either
that a marker polymorphism is a cause of disease, a single nu-
cleotide polymorphism (SNP) in a coding region for example,
or that the marker is closely linked to a disease locus with which
it is in population linkage disequilibrium (LD). If a marker
allele is in LD with a disease susceptibility allele, it occurs more
often on chromosomes bearing the susceptibility allele than
would be expected at random (fig. 1).

Many problems need to be overcome before one can expect
a reasonable chance of success in mapping genes underlying
complex diseases. One complication has to do with the relation-
ship between genotype and phenotype. In a majority of com-
plex diseases, the disease phenotypes are highly variable and
may involve measurements on many (possibly correlated) vari-
ables. Physicians may erroneously classify individuals as hav-
ing different diseases when a common underlying disease dis-
plays high phenotypic variability. The opposite situation can
also occur, with individuals affected by different disorders be-
ing placed in the same disease category. These problems reflect
one of the more difficult aspects of studying complex disorders,
understanding the relationship between phenotypes and geno-
types. This relationship may be many-to-many, many-to-one,
or one-to-many, unlike the case with simple Mendelian disor-
ders. In the absence of genetic heterogeneity, the relationship
between phenotype and genotype for single locus Mendelian
diseases is most often one-to-one. Even for simple Mendelian
diseases, however, complications arise. Many examples exist
of disorders that physicians have historically recognized as iwo
or more syndromes, yet are later shown to be caused by a single
disease gene. ‘

The combinations of genes influencing a complex disease,
and the magnitude of environmental effects (and therefore the
heritability), may vary among families and populations. The

Am J Pharmacogenomics 2001; 1 (3)
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Fig. 1. Hypothetical population of 5 disease mutation-bearing chromosomes de-
scended from a single ancestral chromosome illustrating the process by which
marker allele frequencies are altered on disease-associated chromosomes ver-
sus normal chromosomes. The horizontal bars represent chromosomal
haplotypes and the 2 vertical bars on each chromosome dencte a disease locus
(at right) and a marker locus {at left). N denctes a normal allele at the disease
locus and D denctes a disease allele. Two alleles are present in the population
at a linked marker locus, 0 and 1. The disease mutation arose on a chromosome
bearing marker allele 0. The ellipse at the bottom of the figure symbolizes the
population of normal chromosomes in which the disease mutation first arose. The
population frequency is indicated above each haplotype. The ancestral haplotype
{on which the disease mutation first arose) is shown at the bottom of the figure
and above this a genealogy relating 5 descendent haplotypes. One recombination
event occurred on this genealogy and is shown to the right of the figure. Time, in
the past, increases from the top to the bottom of the genealogy. The ellipse at the
top of the figure symbolizes the present-day population of disease chromosomes.
The frequency (in the population of disease mutation-bearing chromosomes) is
indicated above each haplotype.

effects of many genes may simply be too small to detect by con-
ventional linkage or association techniques without unrealisti-
cally large sample sizes. As well, many of the populations from
which individuals are sampled in studies of complex disorders
are heterogeneous; admixture in such populations can lead to
false associations of markers with a disease and may inflate esti-
mates of heritability because of the presence of gametic phase
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disequilibrium.*! Technical problems also arise in interpreting
the results of whole-genome screens of thousands of markers in
linkage and population association studies because the large num-
bers of markers used can result in many false associations unless
very small type I error levels are used to determine significance,
but this will reduce the power of the approach.5! It may often be
difficult to verify or reproduce associations observed in particular
studies because differences in gene frequencies among popula-
tions can lead to high heritability (or strong association) in one
population but not in other populations with different genetic
backgrounds. Genetic stratification can affect linkage studies as
well, causing the penetrance of a disease to vary among popula-
tions, or resulting in different susceptibility loci being mapped in
different populations.

The ultimate usefulness of susceptibility loci, once identified,
in genetic counseling or in the development of new therapies is
also not clear. If genes have purely additive effects, it should be
possible to accurately predict patient risk based on the genotypes
observed at known susceptibility loci (and taking account of any
environmental risk factors). However, if there are large epistatic
effects between susceptibility genes, their relative effects may be
highly dependent on the genetic context (depending on the overall
genetic background) and therefore inherently less predictable.
Similarly, if gene-environment interactions occur, individuals
with identical genotypes may have different genetic risks if ex-
posed to different environments. !

The above considerations suggest that strategies may need to
be developed that are biased toward mapping susceptibility loci
whose effects are additive. This would lead to the initial identifi-
cation of genes most immediately useful in terms of predicting
patient risk, or developing safe therapies of general use to patients
carrying susceptibility genes. Genes whose effects are additive
carry a fixed risk, allowing useful genetic risk predictions for
individuals based only on their genotypes and the overall popu-
lation risk. As well, potential drug therapies that modify the ef-
fects of an additive susceptibility locus should have predictable
effects in reducing the risk of all patients with a given genotype.
However, other, non-additive loci will still he of interest in treat-
ing patients in particular high-risk populations, and in under-
standing the overall nature of a disease, especially if followed up
by gene targeting studies in model organisms.

The APOE €4 susceptibility allele for sporadic Alzheimer dis-
ease presents an interesting example of a complex disease sus-
ceptibility locus with a nearly additive effect across genotypes.
Corder et al.l"] found that the proportion of individuals unaffected
by Alzheimer disease at age 75 years who carried the e4/e4 ge-
notype was roughly 20%, whereas the proportion of £3/e4 indi-
viduals unaffected was roughly 40%, and the proportion of £3/€3

Am J Pharmacogenomics 2001; 1(3)
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individuals unaffected was roughly 70%. Thus, each copy of the
€4 allele increases an individual’s risk of developing Alzheimer
disease by age 75 years by between 20% and 30% (see section
9).81 The APOE €4 allele has thus far been studied mainly in
Europeans and may have less importance as a risk factor for Alz-
heimer disease in other ethnic groups.

The task of identifying susceptibility loci for complex diseases
and elucidating their function is bound to be difficult, requiring
a multifaceted approach using both mapping studies in humans
and functional studies in transgenic model organisms. This re-
search will be expensive and may require decades to complete.
However, because such diseases are much more common than the
rare genetic disorders that have been the subject of a majority of
studies thus far, advances in this area have the potential to greatly
influence humankind, alleviating the suffering of a large number
of persons and extending the productive human lifespan. Time
will tell whether this will be the greatest contribution of human
genetic studies.

Given their enormous potential for diagnosing and treating
human disease, few would argue that genes affecting complex
diseases are not worth pursuing, despite some discouraging ob-
stacles. However, recent reviews tend to be either very pessimis-
tic®! or very optimistic.’! Here, the aim will be to present an
overview of current strategies for mapping complex disease that
falls somewhere between optimism and pessimism, discussing
the most significant difficulties that arise in studies aimed at map-
ping genes influencing complex traits and outlining some existing
strategies aimed at overcoming these problems. The ultimate use-
fulness of many of these strategies has yet to be proven, as genetic
studies of complex diseases are still in their infancy.

The difficulty and expense of undertaking dense marker
screening and mutation detection studies to identify genes influ-
encing susceptibility to common diseases requires that a prospec-
tive study be approached cautiously; evaluating the overall feasi-
bility at each stage. A possible progression of strategies is as
follows: establish that a disease is significantly influenced by
genes and is not purely due to environment; examine the distri-
bution of gene effects and assess whether evidence exists for dis-
ease susceptibility loci of major effect; examine the potential
power and/or feasibility of different gene mapping approaches
(i.e. linkage analysis, association studies, etc.) to detect suscepti-
bility loci; undertake genotyping studies of single nucleotide
polymorphisms, or microsatellite markers, aimed at identifying
disease susceptibility loci (or candidate regions for susceptibility
loci). All of these objectives, apart from the last, can be accom-
plished prior to a molecular genetic analysis; if the results are
predominantly negative this could bc a basis for precluding a
marker-based gene mapping study. Thus, although the aim of this
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paper is to describe marker-based methods for mapping genes
influencing common diseases, a review will first be presented of
methods for establishing whether a complex disease is influenced
by genetic variation segregating in a population and whether a
genotyping study is likely be successful in uncovering suscepti-
bility loci.

1. Genetic Models of Complex Diseases

To establish the role of genes in causing a complex disease,
and the potential power of a particular mapping strategy to find
disease susceptibility genes, mathematical models are needed that
allow one to predict phenotype from genotype. Simple models of
Mendelian segregation typically cannot account for the pattern of
recurrence of a complex disease in families; this is expected if
such disorders are polygenic and affected by environment. The
relationship between phenotype and genotype is complicated in
such cases, yet some very simple models have been developed
over the last century that can be quite useful and provide a starting
point for addressing this relationship. In this section, we describe
these models, which fall into the realm of ‘quantitative genetics’,
and their application. For a more comprehensive introduction to
quantitative genetics, see the recent books by Falconer and
Mackay!!% and Lynch and Walsh.!!1]

1.1 Historical Overview

Mathematical models of complex traits were developed
shortly after the rediscovery of Mendel’s work. The models were
needed to reconcile the observations of biometricians such as
Johannsen that the variation of many traits, such as weight and
height, is not discrete like the pea traits studied by Mendel, but
instead appears continuous, and is often normally distributed in
populations. Initially, this was taken as evidence against a discrete
gene model of inheritance and alternative models of blending
inheritance were developed to explain the obscrvations. Dar-
win!'?l had assumed that continuous characters exhibited blend-
ing inheritance and Galton!'*! and Pearson!*15] further developed
this theory. Fishcr!!%) showced that a blending inheritance hypoth-
esis was inadequate to explain existing variation in populations
because such a process would eliminate variation too quickly,
halving thc genetic variation with each generation of random
mating.

Fisher!!”] proposed a model for the genetics of continuous
characters in which a trait is governed by many genes and influ-
enced by environment. This theory provided a mathematical for-
mulation of earlier ideas, arising from experimental studies by
Mendel and others, that continuous variation could result from
the effects of multiple independently segregating genes.['!] A

Am J Pharmacogenomics 2001; 1 (3}
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polygenic discrete gene model, with each gene having an inde-
pendent additive effect (of similar magnitude) on the phenotype,
results in a normal distribution of the phenotype, agreeing with
the observations of the biometricians.

1.2 The Basic Model

The area of population genetics that applies Fisher’s theory to
study continuous traits has come to be known as ‘quantitative’
genetics, reflecting the fact that the traits under study are typically
measured rather than placed into discrete categories as with sim-
ple Mendelian traits. The canonical model employed in quantita-
tive genetics treats the phenotype of an individual as determined
by an equation of the form

P=3 Sy +D+1+e¢ (Eq.1)
i

where x;; is the additive contribution of allele j at locus i to the
phenotype (P), D summarizes the effects of all non-additive in-
teractions between alleles at the same locus (deminance effects),
{ summarizes the effects of all the non-additive interaclions be-
tween alleles at different loci (epistatic effects), and € is the effect
of environment, typically assumed to be a random variable from
a symmetrical distribution with a mean of zero. Figure 2 illus-
trates the population frequency distribution (obtained by simula-
tion) of phenotypes (in a sample of 1000 individuals}) for a com-
plex trait influenced by either 4 loci or a single locus, with each
locus having 2 alleles in equal frequency, and with each allele
either adding or subtracting 1 unit from the phenotype. Environ-
mental effects were assumed to follow a normal distribution, with
a mean of zero and a variance of either 0.25 (for the case of a
single gene affecting the trait) or 1.0 (for the case of 4 genes
affecting the trait). Even with only 4 genes affecting the trait, the
frequency distribution in the population approaches a normal dis-
tribution.

1.3 Disease Threshold Models

The theory outlined above deals with continuous, normally
distributed traits. Most complex diseases do not [it this descrip-
tion, although the underlying phenotype is often continuous at
some level. On the one hand, physicians tend to recognize indi-
viduals as affected by a disease displaying a continuous range
of phenotypes in a population if their phenotype falls outside of
what is considered the normal range (for example, obesity). On
the other hand, a polygenic disease might appear discrete, but this
is because it is only manifest when the underlying phenotypic
variables exceed some biological threshold (cleft palate is a pos-
sible example). Threshold models can be usefully applied in both
cases described above and were used early on to model discrete

© Adis International Limited. All rights reserved.

variants that did not display a simple pattern of Mendelian seg-
regation by Pearson,[!*] Wright,/'8] Dempster and Lerner,!?! and
others.”™ Edwards,!?"! Mendell and Elston,[?Y and others applicd
these models in estimating familial disease risk in humans. The
models relate the discrete incidence of a disease to an underiying
continuous model of gene effects by assuming that a threshold
value exists for the trait; if an individual’s value exceeds this
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Fig. 2. The population frequency distribution of a phenotype in each of 2 simulated
diploid populations, each comprising 10 00C individuals. (a) A simulated popula-
tion in which it is assumed that the trait is determined by 4 biallelic loci, with each
allele having an additive {either +1 or —1) effect, and an enviranmental influence
that is normally distributed with mean 0 and variance 1. The phenotype distribution
is unimodal, and approaches a normal distribution, despite the relatively smalil
number of loci influencing the trait. In this case, the trait appears complex. (b) A
simulated population in which it is assumed the trait is determined by a single
biallelic locus, with each allele having an additive (either +1 or —1) effect, and an
environmental influence that is normally distributed with mean 0 and variance 0.25.
In this case, the distribution is tri-modal; the left and right modes represent the
homozygous {—/— and +/+) phenotypes {deviations about -2 and +2 are due to
environment) and the middle maode represents the heterozygous (—/+) phenotype.
In this case, the trait appears Mendelian.
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Fig. 3. A hypothetical threshold trait. The curve represents the population frequency
distribution of liabilities (underlying phenotypes), the vertical line at the right is the
threshold value for the trait. Individuals with a liability value to the right of the
threshold are affected, those with a liability value to the left are unaffected. The
population disease incidence is the area under the curve to the right of the threshold
value.

threshold they display the disease phenotype, otherwise they do
not. This concept is illustrated in figure 3.

In disease threshold models, the horizontal axis, which meas-
ures the trait value, is referred to as the liability. The models are
therefore often referred to as liability models. The area under the
curve for liability values exceeding the threshold is the expected
incidence of the disease in a population (fig. 3). Although thresh-
old models have played an important role in human genetics,
many disorders have a broad range of phenotypes for which any
designation of ‘diseased’ versus ‘normal’ is somewhat arbitrary.
This allows scope for the power of mapping studies to be in-
creased by altering the categories used to assign individuals to
the disease class. Classical results relate the strength of artificial
selection to the change in population allele frequency following
an episode of selection.I'!l Based on these results, a number of
researchers have argued that allelic associations are more easily
detected by choosing more extreme phenotypes (i.e. raising the
threshold value),/?31 possibly by sampling from both the upper
and lower tails of the phenotype distribution.[?*] This has been
advocated as a general strategy for mapping genes influencing
complex disorders (but see Allison et al.l?5)).

There is general agreement that phenotypes must be more care-
fully identified and subcategorized for studies of complex dis-
eases. One novel approach is to compare the severity of the phe-
notypes of affected individuals with different genotypes at a marker
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locus; if a difference is detected this can indicate a role for the
locus (or a nearby linked locus) in disease.[2%] Since most thresh-
old models are based on univariate phenotypes and realistic dis-
ease categorics will usually be multivariate, more studies are needed
that consider the effects of ascertainment to the disease class on
the power 1o detect allelic associations. In the case of complex
diseases displaying a continuous range of phenotypes, measure-
ments on disease phenotypes may be analyzed directly in gene
mapping studies. Methods have been developed for pedigree-based
linkage mapping of a quantitative trait locus (QTL) using a vari-
ance components approach with either a single linked genetic
marker!?”! or multiple genetic markers[?®! and analyzing measure-
ments of a continuously varying trait. The term QTL is often used
to describe a major locus that accounts for a large proportion of
the population variance of a quantitative trait phenotype.

2. Disease Heritability

Early applications of quantitative genetics to human disease
focused mainly on measuring the degree of genetic determination
for particular disorders. This work relies heavily on the variance
component analysis approach developed by Fisher.!!7l A review
aimed at statistically-oriented readers can be found in Hopper.[?°]
The basic aim of variance component methods is to partition the
population variation of a phenotype (Vp} into components arising
from different sources. The main dichotomy of interest to genet-
icists separates variance due to genetic differences among indi-
viduals (V) from variance due to differences of cnvironment
(Vi). The genetic component of variance can be further subdi-
vided into additive (V,), dominance (Vp} and epistatic (V}) ge-
netic variance as illustrated in the following equation!]
Vp=V4+ Vp + Vj+ Vg (Eq.2)

These variance components correspond to the various genetic
and environmental contributions presented in equation 1 (section
1.2). The ‘additive’ genetic component refers to the variance aris-
ing from the terms involving x; in the sum of equation 1. The
magnitude of each component of genetic variance depends on
population allele frequencies, as well as gene effects. A gene with
a large effect, for example, may contribute little to the genetic
variance if itis in low frequency. Components of genetic variance
have been used to define measures of the heritability of a trait.
The broad sense heritability is defined as H? = V/Vp and the
narrow sense heritability as h? = V,/Vp. H? has been of most
interest to human geneticists, while #% has been of interest to
animal breeders.

Am J Pharmacogenomics 2001; 1 (3)



Finding Genes Influencing Complex Diseases

209

2.1 Estimating the Heritability of a Complex Disecse

Before attempting to identify genes for a complex disorder, it
is prudent to first determine whether there is a significant genetic
component for the disease in a study population. Many techniques
have been developed for estimating the heritability of complex
genetic diseases. One common approach uses studies of pairs of
close relatives, or of monozygotic (MZ) or dizygotic (DZ) twins.
The usual approach in twin studies is to compare the correlation
of phenotypes between MZ versus DZ twins.[?} Because MZ
twins share all their genes, while DZ twins share only half their
genes, the difference in the correlation of trait phenotypes be-
tween MZ versus DZ twins can be used to estimate trait herita-
bility. The broad sense heritability is estimated as twice the dif-
ference between the correlation coefficient of the quantitative
phenotype in MZ versus DZ twins. Twin studies potentially offer
experimenters greater control over environmental and genetic
components of phenotypic variance and are therefore very prom-
ising for studies of complex disease.[*®] Another approach to es-
timating heritability evaluates the patterns of transmission of a
quantitative trait (or disease) phenotype on extended pedigrees.?!]

2.2 Disease Heritability and Population Genetic Structure

Measures of heritability are influenced by population genetic
structure because of the dependence of heritability measures on
population allele frequencies at the relevant loci. For example, in
the case of a single genetic locus, with two alleles A| and A;, with
population frequencies p and 1 — p, respectively, and with AjA,
having phenotype a, A|A; having phenotype d, and AzA, having
phenotype — a, H? is

s Va+Vp
Va + Vp + Vg

and™

Va = 2p (I-p)la +d(1-2p))%,
Vp = (2p(1-p)d)*.

‘The effect on H? of changing the population frequency, p, of
allele A, determined using the above equations, is illustrated in
figure 4. If alleles with additive effects influencing a disorder
have either a very low or a very high frequency in a population,
the disease will have low heritability in that population. As a
consequence, a particular genetic disease may have high herita-
bility in one population and low heritability in another. A lack of
reproducibility (in additional populations) of the result of a study
indicating high heritability of a trait cannot be taken as evidence
against a genetic component to the disorder; the safest conclusion
is that either there is little segregating variation for the disease
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loci in these additional populations, or there is an increased influ-
ence of the environment.

2.3 Reliability of Disecise Heritability Estimates

Several kinds of interactions can inflate the heritability of a
trait even though limited additive and epistatic genetic variance
exists. These include gene-environment interactions, ¥l which can
cause heritability estimates to depend on environmental effects
(that may vary among populations), and gametic phase disequi-
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Fig. 4. The effect that changing allele frequencies, and environmental variances
among populations will have on the broad sense heritability of a trait {(H?), deter-
mined by a single locus with either additive, recessive, or dominant effects among
alleles. It is assumed that the locus is biallelic and the relative contribution of each
of the 3 distinct phenotypes (homozygote -/-, heterozygote +/- and homozygote
+/+) to the genclype are —1, d and +1, respectively, where d is the phenotypic
value of the heterozygote. {a} H as a function of allele frequency for either reces-
sive, or additive, effects amaong alleles [assuming the environmental variance (V)
is 1.0]. Populations with intermediate allele frequencies will display the highest
heritabilities for the trait. (b} H2 as a function of V=for either recessive, or additive,
effects among alleles (assuming the allele frequency is 0.5). Populations with
greater environmental variance will show reduced heritabilities for the trait.
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librium, which can inflate genetic variance and thus heritability
estimates.*! Variance due to gametic phase disequilibrium (often
due to recent admixture) may be particularly problematic when
heritability estimates are derived from pedigrees that may include
admixture. These factors together suggest that heritability esti-
mates should be taken as only crude indicators of the role of genes
in producing disease in any given population. Twin studies have
been carried out to estimate heritability for many complex traits
and estimated heritabilities are often exceptionally large. For ex-
ample, Commuzzie and Allison*2] estimated heritabilities for
several components of obesity to range from 40% to 70%. In
general, most factors bias estimates in favor of larger heritabilit-
ies and so these results should be interpreted as placing an upper
bound on the heritability of a trait.

3. Measuring the Distribution of Gene Effects

If beritable variation exists for a disease trait in a population,
one can use the phenotypes observed either on extended pedi-
grees, among parents and offspring, or among sib-pairs, to assess
the evidence for one or more loci of major effect (QTLs). The
method of complex segregation analysis (CSA) has been used to
carry out such studies in humans.[33-34] Existing CSA methods
typically use likelihood ratio tests to evaluate hierarchical models
of either no genetic effects, one major gene with no background
polygencs, no major genes but only background polygenes, or
one major gene plus background polygenes.['!] Recently, these
approaches have been extended in various directions. In particu-
lar, the calculations can now be carried out on large pedigrees
using Markov chain Monte Carlo methods.[331 CSA methods
should be used with caution as they can be very sensitive to model
assumptions. In particular, the methods assume that the distribu-
tion of phenotypes of individuals having a given genotype is nor-
mal. If this assumption is violated, the tests may falsely indicate
a major disease locus.[3%371 Another problem is that, if genotype-
environment interaction is present, the power of the methods to
detect a major gene may be very low.383% Another approach to
determining whether a disease is caused primarily by a single
major locus, or is instead polygenic, compares the disease recur-
rence risk ratio A for different classes of relatives (siblings, cous-
ins, etc.). The risk ratio for a type R relative of an affected indi-
vidual is the probability that the relative is affected divided by
the probability that a randomly chosen individual from the pop-
ulation is affected (i.e. the population disease prevalence). Under
arange of models with either additive, or epistatic, effects among
disease alleles and loci, the value of A decreases more rapidly with
an increasing distance of relationship if multiple disease loci are
involved. % Based on this, Risch!) argued that a single genetic
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locus was not compatible with existing data on the incidence of
schizophrenia among relatives of various degree. Approaches to
detecting polygenic diseases based on risk ratios should be inter-
preted with caution because gene-environment interactions can
produce similar patterns (of decreasing A with increasing distance
of relatedness), as would be predicted in the presence of poly-
genes even when a single major disease locus exists.[©!

4. Predicting Mapping Power Using Quantitative
Genetic Models

Several authors/*?-*2 have considered the power of either link-
age, or association, methods for mapping complex disease loci
under very specific quantitative genetic models. These include
either models in which disease alleles have purely additive effects
within and among loci,1*243 or multiplicative models of epistasis
in which the penetrance of a phenotype is the product of the pen-
etrance factor of each allele al cach susceplibility locus. " Most
of these models are special cases of a general model described by
James.*¥ Although the models provide a rough guide to the per-
formance of different methods, they are obviously quite artificial
and the results may not generalize. In this review, we consider
the power of different gene mapping methods only in the context
of a few simple models. Although a range of models have been
developed over the last century to describe complex traits, none
are entirely realistic and most are quite unrealistic. Many genes
may display complex higher-order epistatic interactions, be influ-
enced by gametic phase disequilibrium due to population sub-
structure, or be subject to gene-environment interaction.

More effort needs to be devoted to studying the robustness of
current methods for modeling quantitative traits and exploring
the possibility of developing new models that are more robust,
Developing very intricate models accounting for all the possible
interactions is clearly hopeless, except for traits affected by a
handful of loci. So-called ‘oligogenic’ models endeavor to study
more complex models by limiting the number of major genes.[*!
An important question for human geneticists is the form of the
distribution of gene effects across disease susceptibility loci (fig.
5). If most complex diseases are influenced by one or more major
genes in most populations there is more hope that these will be
identified and effective treatments developed based on these find-
ings.

5. Methods for Mapping Genes Influencing
Complex Diseases

Two distinct approaches, linkage mapping and association anal-
ysis, have been used to map disease mutations. Linkage mapping
uses inferred recombination on pedigrees made up of affected and
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Fig. 5. Hypothetical frequency distribution (in the population of affected individuals)
of gene effects across the loci that influence a polygenic (complex} disease, or a
Mendelian disease, as measured by the marginal disease risk due to each locus
(i.e. the probability that an individual has the disease given that they possess a
susceptibility allele at the locus; considering only heterozygotes). The dashed line
indicates one possible (arbitrary} critetion for identifying a locus as a quantitative
trait locus {QTL), if the marginal risk due to alleles at the locus exceeds 0.5. For a
complex disease, the frequencies (in the population of affected individuals) of
disease-associated alleles at loci with large effects (QTLs) will be low (right of
figure), while the frequency of disease-associated alleles at loci with small effects
will be high (left of figure). For a Mendelian disease, the frequencies (in the popu-
lation of affected individuals) of disease-associated alleles at QTLs will be high
{right of figure}, while the frequency of disease-associated alleles at loci with small
effects will be low (left of figure).

normal individuals to identify markers that are closely linked to
a disease locus. Although linkage mapping methods have been
used successfully to map genes associated with complex diseases,
the APOE locus contributing to late-onset Alzheimer disease be-
ing a notable example,!”! the power of linkage methods to map
genes for diseases with complex inheritance (and low gene-spe-
cific penetrance) is often low. When carrying out linkage analysis
using affected sib pairs, for example, the sample sizes needed for
80% power (i.e. to reject the null hypothesis of a linkage when it
is false) are generally greater than realistically possible.l3]
Association methods for mapping disease susceptibility loci
typically compare allele. or haplotype. frequencies between sam-
ples of affected and unaffected individuals. If an allele (or haplo-
type} has a higher frequency in affected versus unaffected indi-
viduals this may indicate that it contributes to the disease in the
population, or is in linkage disequilibrium with a disease suscep-
tibility locus. Association studies are generally more powerful
than linkage methods when locus-specific disease penetrance is
low, but can be prone to false-positives when population stratifi-
cation exists, or controls and affected individuals are improperly
matched. Linkage disequilibrium (LD) can alse be useful for
high-resolution mapping of a disease susceptibility locus once a
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candidate region has been identified. LD mapping methods use
the expected excess in frequency among affected individuals of
the marker haplotypes on which disease mutations first arose to
fine-map the location of one or more disease susceptibility genes.

Here, we give a brief overview of current linkage and associ-
ation mapping strategies and their relevance for mapping genes
affecting complex genetic diseases. As well, we consider how the
availability of a human genome sequence is impacting genetic
studies of complex diseases using these techniques.

6. Linkage Mappihg and Complex Diseases

Early linkage methods were based on direct counts of recom-
bination events; the number of observed recombination events is
divided by the number of informative meioses to directly estimate
the recombination fraction between a marker locus and a disease
mutation. For small distances [less than 10 centiMorgan (cM)]
the fraction of recombinants, 6, provides a good estimate of the
map distance, x, while for larger distances the relationship is more
complex. A model first proposed by Haldane,!*6! which assumes
no hotspots or interference, specifies the relationship between the
absolute value of the map distance and the expected recombina-
tion fraction. The Haldane model takes account of multiple cross-
overs and is based on a Poisson process model of recombination;
several more complex models, allowing for interference and other
sources of non-independence among recombination events, have
been proposed.[47]

For humans, the sex averaged relationship between physical
distance and map distance is roughly 1 ¢cM = 1 Megabase (Mb).[48]
Taking advantage of this relationship, recombination fractions
estimated by linkage analysis can be used to localize a disease
mutation to a physical region of a chromosome. Direct approaches
for estimating recombination fractions do not make full use of the
available data. Because individuals are genotyped, and not haploty-
ped, phase is unknown and must be inferred from the transmission
patterns of markers on pedigrees. In some cases, this can be done
unambiguously and a direct approach is fully informative. In most
cases, however, the phase of many chromosomes in the pedigree
cannot be unambiguously determined, although a restricted num-
ber of possibilities may exist. Mathematical models can weight
these different possibilities according to their probabilities and
allow information to be extracted that would be unavailable to
the direct method. In addition, direct approaches are prone to
biases which are avoided by the use of statistical models.[*"]
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6.1 Pros and Cons of Linkage Mapping in Studies of
Complex Diseases

Many statistical techniques have been developed over the last
several decades for estimating the recombination fraction be-
tween a marker and disease locus (enabling the genetic and phys-
ical distances between them to be predicted) using probability
models of allelic transmission and recombination.[*?) These meth-
ods are typically either based on the method of maximum likeli-
hood,5%31 or use a Bayesian strategy.52] Originally, the methods
allowed only one marker to be analyzed, but recent theoretical
developments, most notably peeling algorithms developed in the
1970s,13*! and computer programs allow multipoint linkage anal-
ysis to be carried out to simultaneously estimate recombination
fractions between multiple linked markers.[49]

Linkage mapping methods have proved highly effective for
mapping mutations in genes that cause simple Mendelian disor-
ders. A major strength of the methods, when applied to rare ge-
netic disorders, is that they are insensitive to allelic and locus
heterogeneity. This is because multiple disease alleles, or genes,
will rarely occur within families when the population incidence
of a disease is low.[¥] Disadvantages of linkage mapping include
greatly reduced power to detect disease alleles that have low pen-
etrance and a limited resolution. Even when large extended fam-
ilies are available, only a few hundred informative meiotic events
can be observed, limiting the resolution of linkage mapping to 1
¢M (roughly 1% recombination) or less.[’3 Other approaches
based on allele sharing (or genomic identity-by-descent) between
relativesi®*5] have similar limitations, although larger sample
sizes can often be obtained when only small clusters of relatives
are necded (affected sib pairs for example).

6.2 Power and Significance in Linkage Analysis of
Complex Disecses

Many studies have examined the power of linkage analysis,
and the sample sizes needed to map genes influencing complex
diseases. Most studies have considered affected-relative-pair de-
signs, rather than cxtended pedigreest®t-571 and have focused on
the sample sizes required either to detect an association with a
marker conferring a particular genotype relative risk!37! or to re-
duce the size of the candidate region to less than 1 cM, allowing
positional cloning.!%! With the availability of a human genome
sequence, the size of a candidate region is now less critical. Other
studies have focused on the significance levels that should be
used in whole genome screens for linkage with a disease. This is
particularly important for complex disorders because the sample
sizes needed to detect significant linkage may be very large. For
example, Lander and Kruglyak??] offered several extended defi-
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nitions of linkage for use in whole genome linkage studies that
correct for marker number in detecting linkage to complex dis-
ease loci. Linkage is considered ‘suggestive’ if a false-positive
would be expected to occur once, on average, in a whole-genome
scan, it is considered ‘significant’ if a false-positive result would
be expected for 5% of whole-genome scans, and it is considered
‘highly significant’ if a false-positive would be expected for 0.1%
of whole-genome scans. The specific logarithm of the likelihood
of odds (LODY) scorcs that correspond to these false-positive rates
depend on the study design, but for a range of allele sharing meth-
ods in humans, suggestive linkage was indicated by an average
LOD score of about 2.25 and significant linkage by an average
LOD score of about 3.65. These values do not differ greatly from
the classical criterion for significance in single locus linkage anal-
ysis of a LOD score of 3.5

6.3 Choice of Markers for Linkage Analysis of
Complex Diseases

Other questions arise in linkage studies of complex diseases
relating to the number of marker loci that should be included in
a whole genome screen, and whether highly polymorphic micro-
satellite markers, which are less common throughout the genome
than are the less polymorphic SNPs, should be preferred because
they carry more information. Carrying out simulation studies of
the inheritance information extracted using markers with varying
dcgrees of polymorphism, and at varying densities, Kruglyak!59!
concluded that SNPs could be as informative as microsatellite
markers, given a sufficiently dense map. He also found that there
was a limit (determined by the sizes of familics) to the informa-
tion increase (for linkage methods) obtained by increasing the
density of markers used in a whole genome screen and concluded
that marker densities of one per cM or less were sufficient for an
initial screen for linkage.

7. Association Studies and Complex Disedases

Another strategy for identifying linked markers or disease sus-
ceptibility loci comparcs marker allcle frequencics between un-
related affected and control individuals. The basic idea is that
causal polymorphisms, or alleles at markers very closely linked
to a disease locus, will occur in higher frequency in affected ver-
sus unaffected individuals. The simplest approach is to use a x?
test to compare the allele frequencies of markers between groups
of unrelated affected and normal individuals. A significant result
indicates that the underlying allele frequencies are different, for
a given marker, in the two groups. If each sample is an inde-
pendent random sample (apart from the stratification by disease
state) and a single marker is analyzed, then significance indicates
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that either the polymorphism is a disease locus, or it is linked to
a disease locus. Recent studies suggest that association methods
can be much more powerful than linkage methods for identifying
disease mutations with low penetrance.!3! One reason is that un-
related individuals share many fewer markers than relatives and
sharcd allcles among affccted, versus unaffected, individuals are
therefore more informative.

7.1 False Associations, Multiple Tests and
Population Admixture

At least two problems can confound association studies of
disease susceptibility loci. First, as mentioned earlier, many marker
loci must be analyzed and therefore many tests are performed and
a correction for multiple tests must therefore be used.'®¥! Second,
genetic drift and variable demographic histories for different sub-
populations can result in variable frequencies of both a disease
and a neutral marker among subpopulations. If, by chance, a marker
allele and a disease both occur in high frequency in one sub-
population and in low frequency in another, then an association
study of individuals from a population that is an admixture of the
two can result in a significant association between the marker and
the disease although they are in fact unassociated within each
subpopulation. In this case, both the marker and the disease are
simply indicators of population affiliation. This concept is illus-
trated in figure 6. Most associations between markers and discase
identified to date have not been reproduced in subsequent studies,
indicating either a high rate of false-positive results for such tests,
or variable frequency of susceptibility genes and/or linkage dis-
equilibrium among populations.

7.2 Family-Based Association Tests

A number of alternative methods have been developed for
identifying discasc-allele associations in the presence of popula-
tion admixture. The transmission-disequilibrium test (TDT),]
and the many recent variants of this method,*?! use the alleles
transmitted from parents to affected offspring as the cascs and the
alleles that are not transmitted as the controls. The assumption is
that both alleles of a parent are from the same subpopulation and
are therefore appropriately matched controls for each compari-
son. This is true only if the parents are not themselves admixed.
An assumption of the methods is therefore that admixture occurs
only between parents and families and is not present within the
genomes of individual parents. Although these methods show
considerable promise, and are particularly attractive because they
are non-parametric (not depending on the details of a particular
genetic model), the power has turned out to be disappointingly
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low for the sample sizes used in many studies, especially for
alleles with dominant effects.!%2)

7.3 Association Mapping in Homogeneaous Populations

Association studies that do not require relatives have at least
two major advantages over methods that use relatives as controls.
First, they enable much larger sample sizes to be obtained because
DNA is needed only from affected individuals. Second, fewer
ethical issues arise (samples and consent forms are needed only
from the individuals initially recruited to a study). Because of the
larger sample sizes that are possible, population association meth-

Subpopulation 2

Subpopulation 1

p, =09
pp=0.9

f{A, D) =0.81
Expected = 0.81

50 : 50 admixture

pAé'O-S: ¥
Py =05 ;
 HAD) =041

7 Expected =025

Admixed population

Fig. 6. lllustration of the way in which population admixture can lead to a spurious
association between a marker and a disease. The two ellipses at the top of the
figure represent hypothetical subpopulations (1 and 2). The marker allele fre-
guency, pa, and the disease frequency, pp, in each subpopulation is indicated, as
well as the expected frequency of affected individuals who carry the marker allele
(based on the marginal frequency of each and assuming they are independent)
and the actual frequency, denoted f(A,D). For the two scurce subpopulation, it is
assumed that no linkage exists between the marker and the disease (which could
be purely due to environment}. The ellipse at the bottom of the figure represents
a population generated by 50 : 50 admixture of the two subpopulations. For sim-
plicity, itis assumed that it is the first generation of admixture and no matings have
yet occurred within the admixed population. The marker allele frequency, and
disease frequency in the admixed population are shown, as well as the actual
frequency of affected individuals carrying the marker, and the expected freguency,
assuming no linkage (and ignoring admixture). The actual frequency is much
higher than expected and (without taking account of admixture) would lead to a
false conclusion that the allele is associated with the disease.
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ods can be expected to have increased power over TDT-type
methods that use relatives as controls. As a consequence, there
has been much recent interest in developing techniques for carry-
ing out association studies that do not require the use of relatives
as controls.

One way in which association studies can be legitimately done
using unrelated cases and controls is to choose individuals from
isolated, or founder, populations. These individuals will have a
common demographic history reducing the chance of spurious
associations due to population admixture and reduced genetic het-
erogeneity 1! In addition, recent founder populations may display
more LD between a discasc locus and linked markers(® although
recent evidence suggests that the difference in background LD
between isolated versus more heterogeneous populations may be
modest.[%3! The population of Tinland is a good example of a
founder population, having undergone a founding event roughly
2000 years ago, followed by a rapid expansion with limited immi-
gration and increased endogamy within subpopulations.[66]

7.4 Association Mapgping in Founder Populations versus
Ancient Isolates

At least two strategies exist for gene mapping studies in ho-
mogeneous populations: (1) choose an isolated founder popula-
tion that may be expected to display higher levels of LD and
reduced genetic heterogeneity for a complex disease (possible
examples include Finland and Iccland); (2) choose an ancient
isolated population that has remained relatively small (and con-
stant) in size for many generations, relying on occasional popu-
lation bottlenecks, and genetic drift, to reduce genetic heteroge-
neity for a complex disease and increase population LD.[64] It is
still too early to predict which (if either) strategy will be effective.
Currently, several commercial and academic efforts are under-
way to map disease genes in homogenous populations such as
those of Iceland®”! and Norfolk Island!®8] taking advantage of
these potential effects.

7.5 Association Studies in Heterogeneous Populations
Using Genomic Controls

Another way in which such studies can be done, in large het-
erogeneous populations, avoiding falsc associations due to ad-
mixture, is to use a set of unlinked neutral markers to identify
individuals with different levels of admixture.[®%-71] The basic
principle of these methods is to stratify heterogeneous popula-
tions into homogeneous subgroups based on the variation ob-
served at unlinked neutral markers. Methods for carrying out as-
sociation studies in heterogeneous, or admixed, populations using
genomic controls are only now being developed and (at the time
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of writing) have not been widely used in actual gene mapping
studies; the methods hold considerable promise with recent sim-
ulation studies suggesting that they may be more powerful than
a TDT test when population stratification is not too extreme.!?!

7.6 High Resolution Mapping of Disease Loci by
Linkage Disequilibrium

LD mapping methods use samples of unrelated affected (and
normal) individuals to carry out high resolution mapping.[’3-77]
The basic idea is that the population genealogy underlying a sam-
ple of chromosomes from unrelated affected individuals is much
larger than typical extended pedigrees, thus allowing many more
opportunities for recombination to occur and providing a higher-
resolution map. Thus far, LD mapping methods have been most
effective when applied to studies of isolated founder populations
such as the Finnish.[%! Most studies have used LD mapping to
narrow the candidate region for a disease gene in a mapping proj-
ect immediately prior to positional cloning phase.””] With the
availability of a human genome sequence, 7871 positional clon-
ing becomes unnecessary because genes in a candidate region can
be identified and directly sequenced and analyzed for mutations.
In the past, with severe Mendelian disorders this has usually
meant looking for nonsense, or other, mutations present in af-
fected but not unaffected individuals. With complex diseases,
interest will instead focus on missense (and other more minor)
mutations, which are present at increased frequency in affected
versus unaffected individuals. Ideally, the effects of any sus-
pected disease susceptibility mutations detected in this way will
then be studied in vitro, or in model organisms, by gene targeting
or other techniques.

LD mapping techniques will play a new role in the post-ge-
nome era; they will no longer be needed for positional cloning,
but they will still remain useful for assigning probabilities that
particular genes in a candidate region (identificd from a human
genome sequence) are disease susceptibility loci. This can in-
crease the rate at which susceptibility loci are identified by greatly
rcducing the number of genes that will need to be sequenced for
polymorphisms in the candidate region. Recently, studies of pop-
ulation LD have been advocated for direct use in whole genome
association studies to map genes influencing complex dis-
eases.[8] The effectiveness of population LD for high-resolution
mapping of disease genes in a candidate region is now well-
proven.!%®) However, it is not yet clear how useful LD will be in
whole-genome marker studies aimed at finding susceptibility
genes for complex diseases. It is entirely plausible that LD may
not extend over large enough regions (o be of use in identilying
disease loci in genome-wide scans (using present marker map
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densities) but will nonetheless be extensive enough to aid in high-
resolution mapping, even in heterogeneous populations, once a
candidate region has been identified using other approaches (such
as linkage analysis). Several authors have recently proposed hy-
brid methods for mapping genes using linkage and LD informa-
tion jointly.81-821 These methods are too new to allow any con-
clusions here regarding their usefulness.

8. Exploiting a Human Genome Sequence in
Studies of Complex Diseases

Two strategies have been proposed for mapping genes influ-
encing complex diseases by population association. Both aim to
take advantage of an annotated human genome sequence now
available.l78791 One strategy uses a dense set of single nucleotide
polymorphisms (SNPs) within coding, regulatory and other func-
tionally significant regions in which mutations influencing com-
plex diseases are most likely to occur.l] The basic idea is that by
comparing frequencies at these loci between affected and normal
individuals, actual causal polymorphisms, or polymorphisms
very tightly linked (and physically near) disease mutations, can
be identified. A second strategy examines a random set of SNPs
evenly spaced throughout the genome with the hope that popula-
tion LD will exist between one or more markers and a disease
locus that will allow the locus to be identified by comparing the
allele frequencies of markers in normal versus affected individu-
als.1801 This strategy would use the human genome sequence only
to physically locate SNPs throughout the genome, whereas the
former would use information from an annotated human genome
sequence both to obtain a physical map of the SNPs and to max-
imize the likelihood of finding an association, and minimize the
number of markers needed, by taking account of the known loca-
tions of genes.

Both the approaches outlined above have recently been criti-
cized as impractical on several grounds.®T Undiscovered genes,
polymorphisms in regulatory regions, or in intron splice sites, and
other non-coding polymorphisms that influence gene expression,
may be missed by a screen restricted to SNPs in known coding
regions. Limited linkage disequilibrium may exist in many re-
gions of the human genome and especially in association with
common disease polymorphisms which, due to their increased
age by comparison with rare mutations, may have experienced
much more recombination with nearby markers.

8.1 Extent of Linkage Disequiliorium in Human Populations

Theoretical predictions concerning the expected extent of LD
on disease chromosomes based on a simple neutral genetic model
have agreed rather poorly with analyses of LD in actual popula-
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tion samples. For example, using simulation to study recombina-
tion in ancestral genealogies underlying a population of chromo-
somes based on a coalescent process modell®3.84] that assumes
exchangeable offspring distributions among individuals (neutral-
ity) and either constant size or exponential population growth,
Kruglyak®3! predicted that LD surrounding common mutations
will typically extend no further than about 3 kilobases (kb) [or
about 0.003cM].

An analysis of genome-wide LD on chromosomes of individ-
uals from a sample of unrelated families of European origin [the
Centre d’Etude de Polymorphisme Humain (CEPH) repository]
revealed LD over spans ranging from 0.10 to 4 cM (roughly 100kb
to 4Mb) in many regions.!3¢) More recently,®7! a study of LD in
several genomic regions in a sample of individuals of northern-
European descent (from the US population) found that high levels
of LD surrounded common alleles, typically extended up to 60kb.
The same study found LD over considerably smaller regions for
a sample of individuals from the Nigerian population. Presum-
ably this is because, unlike Europeans, the Nigerian population
did not experience a recent population bottleneck. It is postulated
that a population bottleneck occurred when the ancestors of mod-
ern BEuropeans migrated out of Africa roughly 200 000 years
ago.187] Episodes of population contraction and expansion can
generate high levels of populations linkage disequilibrium. Even
in the Nigerian population, however, LD extends further (about
5kb, on average) than predicted by Kruglyak!®*) based on neutral
coalescent theory.

Analyses of LD around the APOE polymorphism associated
with late-onset Alzheimer disease showed LD extending up to 40
kb.[8889] Directional selection can greatly increase LD at nearby
loci and thus overall levels of LD may be much higher than would
be predicted based on a neutral model.!*?! This is also true for loci
with epistatic interactions.®! Other important factors ignored in
Kruglyak’s analysis, 3 such as population subdivision, also tend
to increase LD. As a result, Kruglyak’s predictions about the
extent of LD are probably too conservative to be useful.

Additional empirical studies, and population genetic models
with greater realism, are needed to determine how far LD will
typically extend on disease chromosomes. This is an important
issue because the 3kb window of LD predicted by Kruglyak
would require that at least 500 000 SNPs be surveyed in whole
genome screens for association based on LD, and this number is
probably too large to be a realistic goal with existing technology.
With LD extending to 100kb, on average, roughly 15 000 SNPs
would be sufficient, and this is feasible using current genotyping
methods and pooled samples. Another problem is that actual LD
is distributed throughout the genome in a stochastic manner de-
termined by the random forces of genetic drift, migration, and
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selection. Disease mutations with the same frequency in a popu-
lation may differ greatly in the extent of LD with markers at
similar distances. The result is that some disease susceptibility
genes will be readily identifiable using LD at linked markers and
others, with markers at a similar map distance, witl not.

8.2 Power of Association Sfudies for Mapping Complex
Disease Genes

Even if a high degree of LD exists, or the causal discase loci
are included in the SNPs that are directly typed in a study, a final
problem remains. If a susceptibility allele has a weak marginal
effect, it may be very difficult to detect even with large samples.
Many studies have considered the potential power of association
methods to detect disease susceptibility genes of weak, or large,
effect.04292 In the remaining section, we summarize the results
from one recent theoretical study*?] examining the power of a
locus-by-Iocus association study as a function of the strength of
the locus-specific heritability of a disease susceptibility locus,
and the extent of LD between a susceptibility locus and a nentral
marker.

8.3 Locus-by-Locus Detection of Disease Genes with
Small Effects

The dominant strategy being developed for mapping suscep-
tibility loci influencing complex diseases compares marker allele
frequencies between unrelated normal and affected individuals
locus by locus. This approach allows population samples to be
pooled, with the frequencies of particular alleles in each pooled
population estimated using quantitative polymerase chain reac-
tion (PCR), or related techniques.”®3! An advantage of this ap-
proach is that an increase in the number of individuals sampled
has little effect on the cost, or effort, of the genotyping. A disad-
vantage is that pooling prevents the use of multilocus haplotypes,
or the use of individual genotypic combinations, reducing the
power of LD-based methods and, in particular, their ability to
identify genes that have small marginal effects but large effects
in a particular genetic background due to epistasis.

For polygenic traits, the phenotype is actually determined by
the joint effects of all genes possessed by an individual at all
susceptibility loci. By considering each marker in isolation, ge-
neticists are focusing on the marginal distribution. Mathemati-
cally speaking, the marginal distribution is obtained by averaging
the phenotype over all the possible genotypes, weighted accord-
ing to their probabilities, at loci other than the locus whose mar-
ginal distribution is the focus of interest. If genes interact to create
disease phenotypes, the marginal effect of a susceptibility locus
may be much smaller than its effect in a particular genctic back-
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ground. In certain situations, however, with sufficiently large
sample sizes, even genes with small marginal effects may poten-
tially be detected in a locus-by-locus study.

Schork et al.,*?! consider a model of a biallelic locus with
additive and dominance effects, but no epistasis. The mean values
of the phenotypes, given genotypes —, — +, and ++, arc —a, d, and
a, respectively. Additive and total genetic variance (V) attribut-
able to the locus is defined as Vg = V4 + Vp, where Vi = 2pg(a ~
d(p — q)¥%, where g = 1 — p. They assume that the phenotypic
variance among individuals with a particular genotype is 6% = |
in all cases. This implicitly assumes that there is no epistasis,
otherwise the residual genetic variance would differ among ge-
notypes. They then consider the locus-specific heritabilities

2 Ve
Vo + 1

and

2 _ Va
Ve + 1

In other words, the contribution to the phenotypic variance of
all the remaining loci, and the environment, is assumed to be 1.
The broad sense heritability, H?, is considered to be the propor-
tion of broad-sense heritable variation due to the locus. A range
of values of H? and 4> were considered by the authors as well as
the effects of different allele frequencies and levels of linkage
disequilibrium between a linked marker and the disease mutation
on power and expected allele frequency differences between sam-
ples of control and affected individuals. We summarize the most
important findings here. First, allowing values of A to vary be-
tween 0.038 and 0.5, and focusing on the probability that an in-
dividual sampled from the upper, or lower, o-percent of the dis-
tribution of phenotypes carries the susceptibility allele, the
authors found that for this probability to be greater than 80%, a
broad sense heritability of at least 0.33 is needed, as well as a
frequency of the susceptibility allele of greater than 0.3. Although
large, these values are not exceptional and suggest that common
disease alleles of moderate effect should be detectable in a locus-
by-locus study.

Schork et al.,[*? also examined the expected sample size
nceded to detect the susceptibility locus with a power of 80%.
They considered either a dominant, recessive, or additive model
with frequencies of the susceptibility allele ranging from 0.10 to
0.25,and LD between the disease locus and a linked marker locus,
as measured by D’ (see definition in [*#1), ranging from 0.25 to
0.75. The marker is assumed to have a frequency of 0.25. Fixing
the type I error rate to be 0.05, the required sample sizes ranged
from 29 to 1297 for a dominant model. Similarly, fixing the type
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1 error rate to be 0.00001, the required sample sizes ranged from
86 to 3700 for a dominant model, 146 to 24 819 for a recessive
madel, and 70 to 3415 for an additive model. With the possible
exception of the recessive model with type I error of 0.00001,
these sample sizes are all quite practical for genotyping studies
using pooled samples.

8.4 Postgenome Strategies for LD Mapping
and Linkage Analysis

A final use of a human genome sequence is to narrow the
candidate region for a disease gene in an analysis using linkage
or LD mapping. Given information (from a mutational database)
about the frequencies at which disease mutations occur in the
introns, exons, nongenic regions, etc., of known disease genes, as
well as information about the positions of genes in a region of the
genome (from an annotated human genome sequence) one can
predict a priori the probability that a disease mutation resides in
any given location. This information is updated with information
from linkage analysis or LD mapping, to predict the posterior
probability that a disease mutation lies in any given region (i.e.
the probability based on both the marker-based mapping infor-
mation and the information from mutational databases and an
annotated human genome sequence). Rannala and Reeve!®3! re-
cently developed a Bayesian method for LD mapping taking ac-
count of information from an annotated human genome sequence
and a mutational database. For their analysis, they used a muta-
tion database of simple Mendelian disorders, which is probably
inappropriate for complex diseases, but as more alleles influenc-
ing susceplibility to complex diseases are identified and compiled
in mutation databases, it should be possible to develop an appro-
priate prior probability distribution for genome-based mapping
of complex diseases. Preliminary simulation studies suggest that
such genome-contextual mapping methods can be highly effi-
cient in reducing the size of a candidate region.[®)

9. Discussion

A susceptibility locus can have a low locus-specific heritabil-

ity for at least two reasons: it has a small effect relative to other.

loci {or environmental factors) influencing the disorder; it is in
low frequency in a population but has a relatively large effect.
Loci in the first class will be of little practical importance when
the effect is very small because they are unlikely to lead to a useful
therapy, and will have low power for predicting patient risk. Loci
in the second class (which are essentially genes influencing sim-
ple Mendelian disorders) will be of greater usefulness, both in
developing therapies for affected individuals carrying the gene
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and in predicting patient risk, but because of their low frequency
will be of little importance for the population as a whole.

Future studies of the power of methods for mapping complex
traits should consider power in relation to importance. For exam-
ple, the fact that the methods may have low power to detect genes
with very small marginal effects should not be of great concern
because either these genes will be rare and of relatively large
effect (and detectable by standard linkage methods) or they will
be common and of such small effect that they have little practical
importance for therapy or genetic counseling. One could poten-
tially evaluate the importance of a gene with a given marginal
heritability and frequency by considering how the risk of disease
for individuals in a population would be modified by substituting
a non-disease-associated allele for the susceptibility allele. This
would be similar to classical approachcs in quantitative genetics,
which quantify the influence of a gene by considering the average
effect of a gene substitution.[

The basic steps involved in a study aimed at mapping genes
influencing complex genetic diseases are illustrated in figure 7.
The first choice confronting a scientist embarking on a study
aimed at mapping genes for a particular complex disease is the
study population to use. Perhaps the most significant potential
difference in study designs will be whether patients and controls
are sampled from a homogeneous, or a heterogeneous, popula-
tion. As mentioned above, there are potential advantages to stud-
ies using homogenecous populations in terms of increased popu-
Iation linkage disequilibrium between markers and disease genes,
and reduced genetic heterogeneity of the disease. A potential dis-
advantage is that often fewer affected individuals can be obtained
than would be available from a larger more heterogeneous popu-
lation. Once populations have been chosen, clinical studies of
phenotypes in affected individuals from the populations can po-
tentially reduce genetic heterogeneity by focusing on homoge-
neous subsets of forms of disease. At this stage, heritability stud-
ies are also advisable to evaluate the level of segregating genetic
variation for the disease in the chosen populations, and to predict
whether one, or more, major disease loci may exist in the popu-
lations.

The next step is to decide whether the study will use unrelated
cases and controls, or affected and unaffected individuals from
families. If unrelated cases and controls are used, genotyping can
be carried out either by estimating allele frequencies in cases and
controls using pooled samples, or by multi-locus genotyping of
each individual case, or control. Sometimes a combination of the
two approaches is used with multi-locus genotyping of cases and
pooling of individuals to obtain allele frequencies in controls. In
the case of a sample from a heterogeneous population, pooling of
samples for cases and controls is inadvisable because of the like-
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Fig. 7. Flow chart depicting the progression of steps (from tap to bottom) involved in an effart to identify genes influencing a complex genetic disease. In many cases,

several allernative strategies are possible {see section 9).

lihood that spurious associations may occur due to admixture. In
that case, multi-locus genotypes of individuals can be used to take
account of population stratification in an association study. If
larnilies are used one has a choice of using either linkage meth-
ods, association studies using family members as controls for
each case, or association studies using unrelated individuals (from
different families) as cases and controls. [n all three approaches,
individual multi-locus genotypes would typically be used.

The final phase in studies using multi-locus genotypes in-
volves either high-resolution mapping to further narrow the can-
didate regions (genes), or direct analysis of candidate genes in a
region identified by either examining an annotated human ge-

nome sequence of a candidate region (assuming this exists) or by
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positional cloning. In practice, LD mapping will often be needed
to narrow the number of candidate genes to a sufficiently small
number that they can be sequenced in enough affected and control
individuals to identify polymorphisms with an increased fre-
quency in affected individuals versus controls.

LD mapping requires that chromosomal haplotypes (phase) be
available for linked markers in a candidate region. If families are
available, the haplotype phase can often be determined by exam-
ining relatives of the individual (from each family) included in
the sample of ‘unrelated” individuals used for LD mapping.1°¢! If
families are not available, maximum likelihood estimates of
haplotype phase can be obtained from population genotypc fre-
quencies using an Expectation-Maximization (EM) algorithm, 7]

Am J Pharmacogenomics 2001; 1 (3)



Finding Genes Influencing Complex Diseases

219

or by calculating the Bayesian posterior probabilities of haplo-
types given genotypes,[”8] but the methods require some assump-
tions about population structure (i.e. random mating) that may be
unrealistic. If an association study is instead carried out using
pooled samples, high-resolution LD mapping will not be possible
without further genotyping within the candidate region of a (non-
pooled) sample of individuals. Without this second-stage geno-
typing, one must hope that the associated markers are an actual
cause of disease, or are close enough to the causal polymorphisms
that these may be identified by sequencing the regions flanking
the markers.

In this review, we have provided a brief overview of the stages
in a study aimed at mapping genes influencing complex genetic
diseases. At each stage, there are many choices as to the way in
which the study will be structured. Often, limited information is
available about the prospective success of each approach and, at
any stage, a negative finding could end the study. Given that both
linkage and association methods appear promising for mapping
complex disease genes, a conservative strategy would be to sam-
ple patients for use in a family-based linkage study and then also
use the information available from a sub-sample of the individu-
als, each from an unrelated family, to carry out an association
study. An advantage of this strategy is that haplotype phase can
often be determined using family members, potentially increas-
ing the power of association and LD studies.

The next few years will undoubtedly see an explosion of large-
sample studies aimed at finding genes associated with complex
diseases. This is assured by the rapid expansion of databases of
SNP polymorphisms in humans, several of which now contain
millions of SNPs mapped throughout the genome (e.g.
www.nchbi.nlm.nih.gov/SNP). Commercial efforts (e.g. www.dna.com
and www.decode.com) are already underway to collect DNA
samples from thousands of individuals affected by complex dis-
eases such as multiple sclerosis and type II diabetes. These sam-
ples will be used for large-scale screening of tens of thousands of
non-coding, missense, and regulatory polymorphisms throughout
the human genome, as well as more modest studies of thousands
of candidate loci. New extremely high-throughput genotyping
technologies (such as mass-array and microarray genotyping) de-
veloped by, and for, industry researchers (e.g. www.sequenom.com
and www.affymetrix.com) will aid in this hunt.

Future questions that human geneticists interested in complex
disease will need to address include factors such as the cost-ben-
efit ratio of mapping susceptibility genes and how this relates to
the mapping effort and available resources. Once we have a few
more successes, and it is possible to make informed guesses about
the distribution of gene effects among loci (and among alleles
within loci) for a typical complex disease, we should be better
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able to predict the long term benefits of such research; the pro-
spective reduction in disease incidence due to increasingly effec-
tive diagnosis and treatment, for example. At that point, it may
become clear that knowing the genes for some diseases will not
mean that we hold the cure. Other goals achievable through ge-
netics might he equally important, however, such as reducing the
population incidence of the disease through preventive screening
and drug treatment, etc.

In this paper, we have described some of the statistical tools
presently available for mapping genes influencing complex dis-
eases. The field is evolving very rapidly and undoubtedly we will
have omitted some techniques that will be of great importance in
future studies, Conversely, we will have included others that will
turn out to be ineffective. Hopefully, we have provided enough
references that motivated readers may discover these shortcom-
ings for themselves. A web page providing links to all the articles
cited in this paper, as well as other articles not cited, and statistical
resources for studies of complex diseases, can be found at
http://rannala.org/complex.html. Readers are invited to submit
links and literature references for this page to complex@
rannala.org.
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