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Advances in sequencing and genotyping technologies over the last decade have enabled geneticists
to easily characterize genetic variation at the nucleotide level. Hundreds of genes harboring muta-
tions associated with genetic disease have now been identified by positional cloning, Using varia-
tion at closely linked genetic markers, it is possible o predict the times in the past at which
particular mutations arose. Such studies suggest that many of the rare mutations underlying hu-
man genetic disorders are relatively young. Studies of variation at genetic markers linked to par-
ticular mutations can provide insights into human geographic history, and historical patterns of
natural selection and disease, that are not available from other sources. We review two approaches
for estimating allele age using variation at linked genetic markers. A phylogenetic approach aims
to reconstruct the gene tree underlying a sample of chromosomes catrying a particular mutation,
obtaining a “direct” estimate of allele age from the age of the root of this tree. A population genetic
approach relies on models of demography, mutation, and/or recombination to estimate allele age
without explicitly reconstructing the gene tree. Phylogenetic methods are best suited for studies of
ancient mutations, while population genetic methods are better suited for studies of recent muta-
tions. Methods that rely on recombination to infer the ages of alleles can be fine-tuned by choosing
linked markers at optimal map distances to maximize the information available about allele age. A
limitation of methods that rely on recombination is the frequent lack of a fine-scale linkage map.
Maximum likelihood and Bayesian methods for estimating allele age that rely on intensive nu-
merical computation are described, as well as “composite” likelihood and moment-based methods
that lead to simple estimators. The former provide more accurate estimates (particularly for large
samples of chromosomes) and should be employed if computationally practical. Hum Mutat 18:87—
100, 2001.  © 2001 Wiley-Liss, Inc.
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INTRODUCTION

In the last two decades, many rare mutations
underlying simple genetic disorders have been
identified by positional cloning. With the
completion of the human gcnome project
[Lander et al., 2001; Venter et al., 2001] there is
the prospect that additional common mutations
will be discovered that influence complex ge-
netic disorders [Risch, 2000]. Virtually all ge-
netic disorders for which genes have been
identified, to date, display some degree of allelic
heterogeneity. That is, the disease-associated
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chromosomes may carry different mutations of
the same gene. In some cases, a single mutation
may dominate in frequency, the AF508 muta-
tion, for example, which accounts for roughly
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70% of mutations that cause cystic fibrosis in
Europeans [EWGCFG, 1990]. In other cases, the
mutations underlying a disease in a population
may all be quite rare, with no one mutation domi-
nating. In the case of Wilson disease, for example,
over 8Q different mutations have been observed,
all in relatively low frequency [Roberts and Cox,
[998]. In a recent study of 136 Wilson disease
patients of Mediterranean descent, 50 different
mutations were observed. The explanation for
such patterns lies in the demographic histories
of human populations and the historical influ-
ences of genetic drift, migration, and natural
selection [see Cavalli-Sforza et al., 1994].

A first step in understanding the influence of
historical events on human genetic variation is
to consider the ages of particular mutations.
Potential information about the ages of muta-
tions is available from the variation observed at
closcly linked genetic markers. In this article,
we review existing methods for estimating the
age of a particular mutation using such informa-
tion and provide some suggestions for future re-
search. It will become clear that much remains
to be done to develop robust statistical methods
for estimating mutation ages. [t will also become
clear that, even in ideal situations, the resulting
estimates of mutation age have wide margins of
error. Despite these limitations, it is still worth-
while, in our opinion, to attempt to use the pat-
terns of genetic variation at markers linked to
significant mutations to seek insight into human
demographic history, historical patterns of se-
lection, and the ages of particular genetic disor-
ders. It will often be the case that such insights
are available from no other source.

Historical Background

Theoretical results bearing on the ages of
mutations have roots at least as far back as the
1930s and in early work on the expected change
in frequency of a mutation over time under the
joint influences of selection, genetic drift, and
migration [Fisher, 1930; Haldane, 1932; Wright,
1931]. Mutation age was not a primary focus of
this work, however, and population geneticists
did not explicitly consider the ages of mutations
until the 1960s, when the molecular details of
the process of DNA mutation became clearer
and new mathematical approaches for studying
population genetic structure using diffusion
theory were developed [see Ewens, 1979].

Ohta and Kimura [1973] present a method
for estimating the age of a mutation based on its
population frequency; they derive the expected
(average) age of a neutral mutation present at a
given frequency in a population and obtain a
simple method of moments estimator of muta-
tion age by setting this expected frequency equal
to the observed frequency and solving for the
unknown mutation age. Maruyama [1974a, b]
extended these results to allow estimation of the
age of a mutation under overdominant (balanc-
ing) selection. His theory shows that overdomi-
nant mutations in populations tend to be older
than neutral mutations at the same frequency.
In fact, after sufficient time has elapsed the
frequency of an overdominant mutation is ef-
fectively independent of its age, making it im-
possible to estimate age from frequency.

The emergence of allozyme electrophoresis
techniques in the late 1960s [Harris, 1966;
Lewontin and Hubby, 1966] presented new pos-
sibilities for estimating the ages of alleles at
allozyme loci based on their population frequen-
cies. However, the fact that many mutations do
not affect electrophoretic mobility for allozymes,
and some have identical effects on mobility, ren-
dered ambiguous the meaning of the “age” of an
electrophoretic variant.

Advances in DNA amplification and sequenc-
ing technologies, and microsatellite genotyping
procedures, as well as the positional cloning of
numerous disease mutations of humans in the
late 1980s and early 1990s enabled geneticists
to unambiguously characterize mutations for fre-
quency-based studies of their ages. At about the
same time, the focus of interest shifted from
mutation frequency (and its relation to age) to
the genealogy of a sample of chromosomes de-
scended from a particular ancestral mutation and
the information that this could provide about
its age [e.g., Morral et al., 1994]. Information
about the genealogy underlylng a particular
mutation can be obtained by examining genetic
variation at closely linked markers.

In this article, we focus on the problem of es-
timating the ages of mutations using informa-
tion from the genealogy underlying a sample of
chromosomes carrying the mutation, rather than
the frequency of the mutation in a population.
The two approaches (frequency-based and ge-
nealogy-based) are complimentary, each provid-
ing a conditionally independent source of



information about the age of a mutation. Slatkin
and Rannala [2000] provide a more general re-
view that covers both types of estimators of mu-
tation age.

INTRAALLELIC GENEALOGY AND THE
AGE OF A MUTATION

[t is important to unambiguously define what
is meant by the age of a mutation. We define the
age of a nonrecurrent mutation, M, to be the
generation, t, in the past at which the mutation
arose. This is not, in general, equal to the age of
the most recent common ancestor (MRCA) of
a sample of chromosomes bearing the mutation,
as illustrated in Figure 1. Here, we use the terms
“mutation” and “allele” synonymously. Mutation
can also refer to the process by which alleles (mu-
tations) arise, and we will occasionally use mu-
tation to refer to the process as well, but the
meaning of our usage should be clear from the
context. The age of a mutation, M, will be esti-
mated using a sample of chromosomes descended
from the mutant, and possibly also a sample of
normal chromosomes not bearing mutation M.
We ignore complications arising from population
subdivision, only briefly discussing its possible
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FIGURE1. The genealogy of a population of chromosomes
bearing a mutation M that arose at time ¢ in the past (mu-
tation event is indicated as a filled circle). Lineages in
bold are sampled, and lineages not in bold are not
sampled. Note that the age of the most recent common
ancestor (MRCA) of the sample differs from the age of the
MRCA of the entire population of descendents of M and
from the age, t, of the mutation itself.
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influence on mutation age estimates. We will ex-
plicitly consider the effects of variable popula-
tion size (and exponential population growth,
in particular), as this is essential in studying
mutations in expanding human populations.

Two distinct approaches can be used to esti-
mate allele age using these kinds of data: 1) phy-
logenetic methods; and 2) population genetic
methods. A phylogenetic approach reconstructs
the gene tree of a sample of mutant chromo-
somes—and possibly also a sample of normal
chromosomes—estimating the age of the muta-
tion as the age of the most recent common an-
cestor (MRCA) in the gene tree. Population
genetic approaches typically use maximum like-
lihood, Bayesian inference, or the method of
moments, to derive estimators of the age of a
mutation that do not rely on a particular recon-
struction of the gene tree of mutant chromo-
somes. This difference can be quite important
as such reconstructions may be very uncertain.
We distinguish two classes of population genetic
approaches: 1) numerical statistical methods for
estimating allele age using maximum likelihood
or Bayesian techniques [Slatkin and Rannala
1997; Rannala and Slatkin, 1998; Markovtsova
et al., 2000]; and 2) composite likelihood or
moment-based methods that allow simple para-
metric estimators to be obtained analytically
[Risch et al., 1995; Neuhausen et al., 1996; Guo
and Xiong, 1997; Reich and Goldstein, 1999].

Population genetic methods using maximum
likelihood, or Bayesian, approaches require an
explicit model of population demography. Both
population genetic and phylogenetic approaches
require models of the processes of mutation (and/
or recombination) at linked marker loci, al-
though this may not always be explicitly stated.
Several of the composite likelihood, or method
of moments, estimators do not require an ex-
plicit model of population demography. However,
these methods either invoke specific assumptions
about the biological processes of mutation, recom-
bination, or population structure to achieve this
simplicity or, as is the case with moment estima-
tors, provide only a point estimate of the allele age
with no associated confidence interval.

Phylogenetic Methods for Estimating
Mutation Age

The phylogenetic approach to estimating al-
lele ages is straightforward. If one imagines that
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a completely accurate phylogenetic tree can be
reconstructed for a sample of disease chromo-
somes using variation at closely linked genetic
markers, then a simple estimator of the age of
the mutation is the age of the root (or MRCA)
in this tree (see Fig. 2). Even if uncertainty about
the age of the root is ignored, problems remain
with this approach. The age of the MRCA de-
pends on the number of disease chromosomes
that are sampled and is always less than, or equal
to, the age of the mutation. This is illustrated in
Figure 2. In principle, one could use the age of
the MRCA of the sample of mutation-bearing
chromosomes to place a lower bound on the age
of a mutation and then use as an upper bound
the age of the MRCA with both mutation-bear-
ing and non-mutation-bearing descendents (us-
ing a sample of both mutation-bearing and
non-mutation-bearing chromosomes). This ap-
proach is illustrated in Figure 2. In practice, the
difference between the upper and lower bounds
obtained in this way may often be large.

A second problem with a phylogenetic ap-
proach is that the age of the MRCA in the gene
tree inferred using information from linked mark-
ers will often be poorly known. Such inferences
require a model specifying how mutation (or re-

<+— MRCA (M+N)

FIGURE 2. The genealogy of a sample of chromosomes
bearing a mutation M (lineages in bold) that arose at time
t (indicated by filled circle} and not bearing the mutation
(lineages not bold). The age of the MRCA of the lineages
descended from M places an upper bound on ¢, while the
age of the first MRCA that has both non-mutation bear-
ing, and mutation bearing, descendents places an upper
bound on t.

combination) operates at the linked marker loci.
In the case of microsatellite markers, most sim-
plified models, such as the stepwise mutation
model [Ohta and Kimura, 1973], do not ad-
equately describe the actual mutation process.
Realistic models will likely need to account for
apparent heterogeneity in mutation rates among
alleles at a locus [Valdes et al., 1993; Jin et al.,
1996; Macaubas et al., 1997] and possible con-
straints on allele size. Although several recently
developed models are a step in this direction [Di
Rienzo et al., 1994; Kruglyak et al., 1998; Rose
and Falush, 1998] their biological realism (and
utility for phylogenetic analyses) have not been
thoroughly investigated.

For mutations that are only a few hundred
generations old there is the additional problem
that even rapidly evolving linked markers, such
as microsatellites, will have experienced few
mutations during this time, providing limited
information for inferring the genealogy, even
when multiple tightly-linked markers are exam-
ined. As well, an accurate (preferably direct)
estimate of mutation rates at the linked loci must
be available. For young alleles, the phylogenetic
approach to estimating allele age can therefore
be expected to have low accuracy. A final trou-
bling aspect of phylogeny-based methods for es-
timating the age of a mutation is that it is not
currently possible to put confidence limits on the
resulting estimates because phylogenetic uncer-
tainty is not accounted for. Although, in prin-
ciple, confidence limits for the estimated age of
the MRCA in a gene tree could be obtained by
bootstrap resampling [Felsenstein, 1985] we
have not found any examples in the published
literature in which this has been done.

In principle, any one of several approaches
may be used to reconstruct the gene tree under-
lying a mutation from the patterns of genetic
variation at tightly linked markers. However,
applications to actual datasets have been mainly
restricted to phylogenies obtained by distance
methods, or maximum parsimony. In the case of
mutations occurring in the mitochondrial ge-
nome, putatively neutral variation in the D-loop
region has been used to reconstruct the under-
lying genealogy. This is possible because mtDNA
experiences no recombination (or a very limited
amount) and the ancestry of the D-loop region
in a sample of individuals carrying a mutation is
therefore an accurate reflection of the ancestry



of the mutation in the sample. Makino et al.
[2000] used a phylogenetic analysis of the D-
loop in normal Japanese subjects, and in Japa-
nese individuals carrying two mutations in the
ATPase 6 coding region (causing Leigh syn-
drome), to present evidence for multiple inde-
pendent origins of each mutation. Although the
ages of these mutations were not a focus of in-
terest in this study, they could also have been
inferred from the analysis.

If mutations are very ancient, DNA sequence
variation in intronic regions can potentially be
used to predict their ages in a phylogenetic analy-
sis. For example, Bergstrom et al. [1999] carricd
out a phylogenetic analysis of intronic sequences
to establish the relationships and ages of alleles
at several MHC loci (see MIM# 142800). They
concluded that alleles within major lineages were
relatively young, having been generated within
the last 250,000 years, although the major lin-
eages appear to predate the separation of hu-
man and gorilla from a common ancestor. The
MHC loci are unusual in many ways and are
likely to be under the influence of overdominant
selection [Doherty and Zinkernagel, 1975; Nei
and Hughes, 1991], consequently harboring
mutations that are much older than most neu-
tral mutations with similar population frequency.
Intronic variation is informative about the ages of
mutations at MHC loci despite the low mutation
rate (roughly 107 per base per generation) of most
introns only because of their extreme ages.

For relatively young mutations, such as those
underlying many rare genetic disorders, few
mutations informative about age will have oc-
curred at linked sites other than microsatellite
loci. The majority of studies using phylogenies
to infer mutation ages have therefore used varia-
tion at linked microsatellite loci. One of the early
phylogenetic studies of the age of a specific mu-
tation focused on the AF508 mutation in the
cystic fibrosis transmembrane regulator gene
(CFTR; MIM# 602421), the most common
cause of cystic fibrosis in Europeans [Morral et
al.,, 1994]. These authors used the maximum
parsimony (MP) algorithm to infer the gene tree
underlying a sample of unrelated individuals
carrying the AF508 mutation (F508del) based
on the variation observed at three closely linked
microsatellite loci. The MP method infers the
minimum number of mutations needed to ac-
count for the data on a particular gene tree; it
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typically underestimates the actual number of
mutations and incorporates assumptions very
similar to those of an “infinite sites” model of
DNA sequence mutation. The infinite sites
model specifies that each nucleotide in a DNA
sequence mutates at most once in the history of
the sample [Watterson, 1975]. The inferred
number of mutations on the genealogy was used
in conjunction with a Poisson model of the mu-
tation process and a direct estimate of the mu-
tation rate [Weber and Wong, 1993] to predict the
age of the root of the genealogy. This was estimated
to be 2,625 generations, or 52,500 years.

Several studies aimed at reconstructing gene
genealogies underlying specific mutations have
used distance methods. A distance matrix among
the haplotypes on which particular mutations
are found is constructed using the pattern of
mutations observed at linked markers. This is
input into a tree-making method such as neigh-
bor-joining [Saitou and Nei, 1987] to infer the
gene tree. The relative lengths of the branches
on this tree are used to predict the relative ages
of alleles. An example is the study by Ajioka et
al. [1997] that used a simple genetic distance
based on the observed number of pairwise al-
lelic differences between haplotypes at 24 marker
loci, and the neighbor-joining algorithm, to con-
struct a phylogeny relating the haplotypes of 85
unrelated hemochromatosis homozygous pro-
bands and 87 normal controls. This analysis
suggested that the most common mutation as-
sociated with hemochromatosis arose quite re-
cently. However, because the distance measure
used by these authors does not increase linearly
with time it is unlikely to be very accurate for
determining the relative ages of all but the most
recent mutations. A simple genetic distance has
been proposed for use with microsatellite mark-

. ers by Goldstein et al. [1995] that has an ex-

pected (average) value that is approximately
linearly related to time. However, this distance
is intended to be used for analyzing marker al-
lele frequencies to infer the relationships of popu-
lations or species and cannot be readily applied
to calculate distances between multilocus
haplotypes. Slatkin [1995] provides an estima-
tor of coalescent times between sampled chro-
mosomes (as opposed to populations) based on
microsatellite variation.

Simulation studies are needed to evaluate the
relative performance of different phylogenetic
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approaches for inferring gene trees underlying
particular mutations; studies examining the ac-
curacy of phylogenetic trees constructed from
microsatellite markers using different genetic
distances provide some guidance, suggesting that
the Goldstein et al. [1995] distance can provide
accurate reconstructions of the topology of a tree
of closely related species when microsatellite loci
mutate according to the stepwise mutation
model [Takezaki and Nei, 1996]. However, new
methods are needed for use with multiple linked
loci. Most methods currently being used to re-
construct gene trees and infer ages of mutations
derive their information from mutations occur-
ring at completely linked markers. If recombi-
nation is considered, it is usually through
approximate reconstructions of ancestral recom-
binant haplotypes. New methods are needed that
incorporate both recombination and mutation
in estimating ages of mutations by phylogenetic
analysis.

Population Genetic Methods for Estimating
Mutation Age

The processes of both recombination and mu-
tation at linked markers provide potential infor-
mation about the age of a specific mutation. This
is illustrated in Figure 3. Population genetic ap-
proaches for estimating t require that statistical
models of the processes of mutation and/or re-
combination be employed. Parametric likelihood
and Bayesian methods require, in addition, that
the population demography be explicitly mod-
eled. The demographic model specifies the dis-
tribution of potential gene trees underlying the
sampled sequences. Information about the age
of a mutation arises from the decay of dis-
equilibrium with nearby markers on disease
chromosomes, which may be due to either re-
combination or mutation, and from the distri-
bution of mutations among descendents. We
illustrate this point for the simple case of a single
marker locus linked to a disease mutation. We
can define the coefficient of disequilibrium be-
tween mutation M and allele 0 at a linked marker
(the allele present on the chromosome on which
M arose) to be

D = puo — Doy

where pyp is the frequency of marker allele O on
chromosomes bearing mutation M and py is the

marker marker

mutation mutation
l’ \V4 v l

CITTI ] [

T

recombination

mutation

A/
I ]

FIGURE 3. A simplified example of the several possible
ways in which a pair of descendent haplotypes may be
modified by comparison with the shared ancestral haplo-
type. The two branches linking the pair of chromosomes
at the top of the figure with the ancestral chromosome at
the bottom represent lines of descent through many an-
cestral chromosomes and may include thousands of mei-
oses. Each chromosome is typed for three genetic markers
represented as rectangles overlayed on the chromosomes.
All chromosomes carry a particular mutation, M, denoted
as an inverted triangle. The genealogy is that of mutation
M and the three markers flanking this mutation may be
altered by either recombination, mutation, or both. Dif-
ferent alleles at the linked markers are indicated by differ-
ent shadings in the figure. The descendent haplotype at
the upper left of the figure has experienced a mutation at
a marker (the second marker to the left of M), while the
descendent haplotype at the upper right of the figure has
experienced both a mutation (to the right of M) and a
recombination event {to the left of M). The region of the
chromosome to the left of the recombination event is no
longer inherited from the ancestral chromosome.

frequency of the allele on all chromosomes in
the population. If recombination occurs with rate
c per generation, then the expected (average)
disequilibrium of marker allele on M-bearing
chromosomes after t generations is

D, = (1 -pole™. (1

This result assumes that initially py;, = O and
that no genetic drift, migration, or selection is
operating. The initial expected disequilibrium is
1 — po, and this declines at an exponential rate
as a function of both the number of gencrations
(meiotic events) separating each chromosome
from the ancestor on which M first arose and
the recombination rate. For large ¢, the disequi-
librium coefficient D approaches Q.



Recurrent mutation at linked markers can
eliminate disequilibrium in a manner similar to
recombination. To illustrate this, we consider a
single nucleotide polymorphism (SNP) linked to
M and assume a simple Jukes-Cantor model (J-
C) [Jukes and Cantor, 1969] of DNA substitu-
tion. The J-C model specifies that changes to all
four nucleotides are equally likely. If the muta-
tion arises on a chromosome with nucleotide A
at the linked site and all nucleotides have equal
frequencies in the population (according to the
stationary distribution for the Jukes-Cantor
model) then (assuming no recombination) the
expected disequilibrium of SNP nucleotide A on
M-bearing chromosomes after ¢ generations is

D, = 3/4¢™,

where L is the mutation rate (per generation) at
the SNP marker locus. More realistic models of
DNA substitution are available [see Hillis and
Moritz, 1996] and the ]J-C model was chosen
merely to illustrate the concept. Different kinds
of markers obviously require different models of
mutation. Microsatellite loci, for example, which
mutate by increasing or decreasing the number
of short tandem repeat sequences, require more
elaborate mutation models than do SNPs.
With multiple linked marker loci, the decay
of LD under the processes of either recombina-
tion, mutation, or both, is quite complex. In ad-
dition to the simple decay of expected LD at
linked markers under mutational or recombina-
tional pressures, information about the age of a
mutation (via its underlying gene genealogy) is
also available from the full spectrum of hap-
lotypes in the sample. In the case of recombina-
tion, information about the age of a mutation
arises mainly from the decay of LD at linked
markers given known rates of recombination
(from a linkage map), whereas in the case of
mutation, information arises both from the num-
bers of new alleles at the linked markers, given
known rates of mutation, and the decay of LD.
Both processes decrease the association between
a disease mutation and an ancestral haplotype.
To develop parametric statistical methods for
estimating mutation age, information is needed
about a number of population demographic pa-
rameters, in addition to the sample of haplotypes
on mutation-bearing and normal chromosomes,
and the marker mutation rates and/or recom-
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bination rates. We outline these additional pa-
rameters and their relation to the statistical like-
lihood of the data below. Here, we present the
parameters outlined by Rannala and Slatkin
[1998, 2000], who used the intraallelic coales-
cent for a rare disease mutation to develop an
estimator of allele age. Other authors that in-
stead use the population coalescent [e.g.,
Markovtsova et al., 2000] consider a slightly dif-
ferent set of parameters. Let X = {X;} where X;
denotes the allele observed at the jth marker of
the ith M-bearing chromosome. Let Q = {¢, p,
Xo, 1} be a vector of parameters of the models
of mutation and recombination. This minimally
includes the map distances between the L marker
lociow = {ai, 0y, ..., 01}, the map position rela-
tive to marker locus 1, denoted as 0, of the mu-
tation whose age is of interest, the matrix of allele
frequencies on normal chromosomes p = i}
(estimated from u sample of normal chromo-
somes), where p; is the frequency of allele i at
locus j, the ancestral haplotype, X,, on which
the mutation arose, and a vector u={u, u,
.+ W} of locus-specific mutation rates where
W is the mutation rate at locus i. The parameter
O = {f, &} is a vector of the demographic pa-
rameters affecting the likelihood and includes
the population growth rate, &, and the fraction,
£, of the total population of extant chromosomes

bearing mutation M that are in the sample. The
likelihood is

Pr(X|5Q,0) = [¢(X| uQ)f(t|1;0)dr. (2)

The parameter 7 is the gene tree which includes
both a tree topology and the set of n — 1 times,
in the past, at which then sampled chromosomes
coalesce to shared ancestral chromosomes. This
is illustrated in Figure 4. The gene tree is an un-
observed random variable and it is therefore pref-
erable to integrate over gene trees to obtain the
marginal probability of the data (which is inde-
pendent of the gene tree). This integration pro-
cedure is presented in Eq. (2), where the integral
is multidimensional and involves summing over
all possible gene trees and integrating over all
possible coalescence times. The ancestral hap-
lotype, Xo, on which the mutation first arose is
unknown but may be estimated from the data
(often it will be clear from the pattern of dis-
equilibrium on disease chromosomes). The fre-
quencies on normal chromosomes can be used
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FIGURE 4. The gene tree and the coalescence times t
through 5 of the genealogy underlying a sample of chro-
mosomes descended from a mutation M. The coalescence
times and the gene tree are unobserved random variables.
The time at which the mutation arose is denoted as t.

to provide a prior probability distribution for X,
[see e.g., Terwilliger, 1995].

Likelihood Methods

Slatkin and Rannala [1997] and Rannala and
Slatkin [1998] developed Monte Carlo integra-
tion methods for evaluating Eq. (2) for either a
model with recombination between a pair of
linked markers, and no mutation [Rannala and
Slatkin, 1998], or a model with no recombina-
tion between markers and only non-recutrent
marker mutation [Slatkin and Rannala, 1997].
The model of marker mutation used by Slatkin
and Rannala [1997] is appropriate when most
mutation events result in new (previously un-
observed) mutations and the method is best
suited for rapidly evolving markers, such as
microsatellites, located very near the mutation
whose age is to be estimated (generally less than
100 kb). Slatkin and Rannala [1997] used the
number of mutant alleles, S, at a set of completely
linked marker loci as the observed data in their
analysis, assuming no recombination. '

A Bayesian Markov chain Monte Carlo
(MCMC) method recently developed by
Markovtsova et al. [2000] uses DNA sequence
data, and a finite sites model of the mutation
process (assuming no rccombination), to infer
the age of a sample of chromosomes carrying a

particular mutation. Apart from the fact that one
method uses sequence data and the other uses
linked markers, there are other differences be-
tween the method of Slatkin and Rannala [1997]
and that of Markovtsova et al. [2000]. The main
difference is that Slatkin and Rannala [1997]
considered only the genealogy of a sample of
chromosomes descended [rom a particular mu-
tation (the intraallelic coalescent), whereas
Markovtsova et al. [2000] considered a sample
composed of both chromosomes that are
descended from a particular mutation and
chromosomes that are not (the population
coalescent).

The methods of Slatkin and Rannala [1997]
and Rannala and Slatkin [1998] are intended
for use with rare mutations (population fre-
quency less than about 1%). An implicit assump-
tion of the method of Rannala and Slatkin
[1998] is that recombination events in the
history of the sampled chromosomes occurred
exclusively in heterozygotes. The relative pro-
portion of alleles transmitted through heterozy-
gotes versus homozygotes in any generation
(assuming Hardy-Weinberg equilibrium) is 2(1 -
p)/p. If p < 0.01, the relative proportion of mu-
tation-bearing chromosomes transmitted
through heterozygotes is more than 200 times
the proportion transmitted through homozy-
gotes, making the assumption reasonable. The
method of Rannala and Slatkin [1998] also as-
sumes that marker allele frequencies on normal
chromosomes have remained constant during
the time since the mutation arose. This is also
most likely to be the case for relatively young
alleles in low frequency in a population. The
method of Markovtsova et al. [2000] could be
used to estimate ages of common mutations as
well as rare mutations, but assumes that the
chromosomes are sampled at random from the
population, which is typically not the case for
chromosomes bearing a disease mutation.

The population demographic model employed
by Markovtsova et al. {2000] provides a prior
distribution for the range of plausible ages of a
mutation before the intraallelic variability is ex-
amined (determined by the frequency of the
mutation and a neutral model of population
demography) and this is updated with informa-
tion from the sequence data to obtain an esti-
mate of the mutation age based on both the
population genetic model and the patterns of



mutation among the DNA sequences. Slatkin
and Rannala [1997] instead condition on the
age of the mutation, t, to obtain a maximum like-
lihood estimate of this parameter without imple-
menting prior information from a population
genetic model.

If an estimate of the age of a mutation ob-
tained using the Markovtsova et al. [2000]
method differs greatly from an estimate obtained
using the method of Slatkin and Rannala [1997]
this may indicate that the population genetic
model is having a large influence on the esti-
mated age. Since the neutral population genetic
model [based on the theory of Kingman, 1982]
employed by Markovtsova et al. [2000] is an
oversimplification, and will be violated in struc-
tured populations or for mutations that are un-
der natural selection, such a discrepancy may
be an indication that the estimate of mutation
age is unreliable because one or more of these
factors are operating, In general, the confidence
interval for the estimated age of a mutation ob-
tained using the method of Slatkin and Rannala
[1997] should be wider than that obtained us-
ing a method such as that of Markovtsova et al.
[2000], and analyzing the same data, because
no prior constraints are placed on the possible
age of t based on a population genetic model.

Rannala and Slatkin [1998] used a model of
the process of recombination between a particu-
lar mutation and a linked marker (assuming no
marker mutation) to estimate the age of the
mutation. The method is best suited for mark-
ers with low rates of mutation, such as SNPs and
RELPs, that are located at map distances from a
mutation ranging from 0.01 ¢cM (roughly 10 kb)
to 1 cM (roughly 1 Mb). Figure 5 shows the like-
lihood of the data of Hastbacka et al. [1992] as
a function of the age of the mutation that causes
diastrophic dysplasia (DTD; also SLC26A2;
MIM# 222600). This likelihood function is
based on a model of recombination only. Figure
5 was produced using the program DMLE (avail-
able from www.rannala.org). The data are ob-
served marker haplotypes in samples of normal
and disease-associated chromosomes [Hastbacka
et al., 1992] having undergone recombination
with a linked RFLP marker (EcoRl) that is
roughly 70 kb telomeric to a particular DTD
mutation in the Finnish population [Histbacka
et al., 1994]. Roughly 90% of the DTD muta-
tions in this sample are descended from a single
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FIGURE 5. Log-likelihood as a function of the age of the
diastrophic dysplasia (DTD) mutation (in units of genera-
tions) in the Finnish population. The data is from
Hastbacka et al. [1992]. A single linked RFLP marker was
used for this analysis (EcoRl). The approximate “com-
posite” likelihood is shown, as well as the exact likeli-
hood calculated numerically using the program DMLE.
The composite likelihood is intended to approximate the
true likelihood but in this case provides a confidence in-
terval (determined by the width of the log-likelihood curve)
that is too narrow.

GT->GC transition in a 5” untranslated exon of
the SLC26A2 gene [Histbacka et al., 1999]. It
is the age of this mutation event that we are in-
terested in estimating. The point estimate of the
age of this mutation obtained by maximum like-
lihood is ¢ = 75 generations, but the 95% confi-
dence interval for the age estimate is quite large
with a minimum age of 19 generations and a
maximum age of 3,170 generations. Additional
parameters used for this analysis are given in
Rannala and Slatkin [1998]. As illustrated in
this example, estimates of mutation age are of-
ten quite imprecise.

As an alternative to exact likelihood meth-
ods, several approximate methods have been
developed which rely on a “composite” likeli-
hood (CL). These methods treat joint probabili-
ties as products of marginal probabilities, which
assumes independence among variables that are
actually dependent [see Rannala and Slatkin,
2000]. The methods therefore ignore one or
more of the sources of uncertainty in estimates
of mutation age and typically provide confidence
intervals for estimates of ¢ that are too narrow.
A strength of these methods is that their sim-
plicity can allow mutation and recombination
to be modeled simultaneously [see Guo and
Xiong, 1997]. A simple moment estimator ob-
tained by setting the expected haplotype fre-
quency equal to the observed frequency and
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solving for the recombination rate provides es-
timates of allele age identical to those obtained
using a particular type of CL [Rannala and
Slatkin, 1998]. Below, we briefly discuss the ap-
proximate CL methods that have been devel-
oped, clarifying their assumptions.

Approximate Methods

Approximate statistical methods for estimat-
ing the age of a mutation, t, fall into two general
categories. Rannala and Slatkin [2000] refer o
these as type I and type Il CLs. Estimators of
mutation age based on a type I CL approxima-
tion [e.g, Risch et al., 1995; Guo and Xiong,
1997] ignore the dependence among chromo-
somes created by their shared genealogy. Those
based on a type II approximation [e.g., Guo and
Xiong, 1997] ignore the dependence of recom-
bination events occurring among multiple linked
markers, treating cach pairwise recombination
process as independent even though many re-
combination events affect multiple pairs of mark-
ers. Although the probability of multiple
recombination events among closely linked
markers in a single meiosis may be negligible,
the probability of multiple recombination events
among markers over the length of a branch on
the gene tree is often large and cannot be ne-
glected. Some authors employ both type I and
1 CLs [Neuhausen et al., 1996]. The relation-
ship between the type I and type Il CL ap-
proximations is further discussed in Rannala
and Slatkin [2000].

If a type I CL approximation is used, and a
single linked marker locus is considered, maxi-
mizing the CL results in the estimator [see
Rannala and Slatkin, 2000 for a derivation]

~ 1
t= —9—{10g(1— p,)—log(Y, - np, ) +log(n)},

where 9 is the recombination rate per genera-
tion (map distance) between the marker and the
mutation, p is the frequency of the ancestral
marker (the marker that was present on the
chromosome on which the mutation first arose)
on normal chromosomes (those not carrying the
mutation), Yo is the number of chromosomes
carrying both the mutation and the ancestral
marker, and n is the total number of mutation
bearing chromosomes that are sampled. An

equivalent estimator for use with mutational
variation at tightly linked markers can be ob-
tained by simply replacing 6 with the muta-
tion rate per generation, M, where py is then
the probability of a reverse mutation to the
ancestral allele, given that a mutation occurs.
Assuming no reversals, this simplifies to [Risch
et al., 1995]

7= L flog(n)—log(Y,)*.
u

Instead of explicitly modeling gene genealogy,
Guo and Xiong [1997] used a diffusion theory
model of population allele frequency evolution
to derive a maximum likelihood method for es-
timating t. There is no analytical expression for
their likelihood and they instead consider ap-
proximate likelihood estimators based on first
and second order (linear and quadratic) Taylor
seties approximations of the likelihood. The first-
order approximate likelihood of Guo and Xiong
[1997] is equivalent to a type I CL. They also
consider a type II CL approximation for treating
multiple linked marker loci and use a stepwise
mutation model to allow for mutations at linked
microsatellite loci.

The log-likelihood surfaces as a function of
the map position of the DTD mutation obtained
relative to a single RELP marker {EcoRI) linked
to the DTD mutation [Histbacka et al., 1992]
using either a type I CL approximation, or an
exact numerical likelihood calculation (using
DMLE), are shown in Figure 5. The CL method
generates a confidence interval (determined by
the width of the log-likelihood surface) that is
too narrow by comparison with the exact likeli-
hood, as expected. The 95% confidence inter-
vals (min ¢, max t) for the estimated age of the
DTD mutation (in units of generations} are (32,
141) for the CL-based method and (19, 3170)
for the ML-based method. Although the use of
approximate CL methods greatly simplifies the
derivation of estimators of mutation age, these
approaches are only approximate and, at best,
may be expected to perform only as well as ML
estimators. In many cases, they may perform
much worse. In general, CL methods produce
confidence intervals that are too optimistic. The
point estimates may also have larger mean square
error than those obtained using likelihood, and



are not guaranteed to satisfy the large-sample
statistical property of consistency. ML or Baye-
sian methods should be employed, in prefer-
ence to CL methods, when this is feasible. The
computer time required to carry out the cal-
culations needed for the exact numerical
methods using Monte Carlo integration or
MCMC will depend on the number of chro-
mosomes and markers sampled. For very large
sample sizes, the computational demand of
these methods may still be too great to make
them practical; an approximate method may
then be the only option available.

Relative Timescales of Mutation and
Recombination

Often, a geneticist interested in estimating the
age of a particular mutation (a disease mutation
in an exon, for example) will have the choice of
using either tightly linked (e.g., intragenic) mark-
ers with high mutation rates (e.g., microsatellite
markers located in introns) or more distantly
spaced markers with lower rates of mutation
(e.g., SNPs located outside the gene). In the first
case, information about genealogy arises from
mutations occurring at the linked markers. In
the second case, it arises from recombination
events between the linked markers. These two
sources of genealogical information operate on
different timescales and this will affect the choice
of marker in particular cases. The use of infor-
mation arising from recombination among mark-
ers has the advantage that it allows one to
potentially fine-tune the recombination rates to
optimize the power of a study for inferring the
age of a mutation by choosing markers at opti-
mal map distances.

Typically, linked SNPs for which accurate map
distances are available (from prior linkage analy-
sis on pedigrees, for example) will have recom-
bination rates ranging from 1 to 10 cM (e.g, O
= 0.01 t0 0.1). Markers with these map distances
will be most effective in resolving the ages of
young mutations (ranging in age from 10 to 100
gencrations). For example, using equation 1 and
assuming that py = 0.01 (i.e., the ancestral
marker is found on only 1% of normal chromo-
somes) we find that if @ = 0.01 and ¢ = 25 then
D =0.77,and if t = 100 then D = 0.36, but if ¢
= 500 then D = 0.08. In this last case, the ex-
pected LD is probably too low to be useful for
inferring the age of a linked mutation. On the
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other hand, if@ = 0.1 we find that ift = 10 then
D =0.36, and ift = 25 then D = 0.08. Thus, if
we were interested in estimating the age of a mu-
tation suspected to be very young, say 10 gen-
erations, then a marker at a distance of 10 cM
would be optimal, while for a mutation 100 gen-
erations old, a marker at a distance of 1 cM would
be optimal. In this example, the expected dis-
equilibrium for a marker at a distance of 10 cM
is much too low (D = 0.000045) to be detect-
able with realistic sample sizes.

At present, linkage maps available for most
genomic regions have a resolution of less than 1
cM, limiting the usefulness of the methods for
estimating mutation age (via recombination) to
mutations younger than about 100 generations.
Some authors have tried to overcome this limi-
tation by assuming that a linear relationship ex-
ists between a radiation hybrid (RH) map and a
linkage map [Stephens et al., 1998] and using
linear regression to predict linkage map distances
from RH map distances which are often avail-
able at a higher resolution. However, the rela-
tionship between RH and linkage maps is poorly
understood at present limiting the accuracy of
such techniques.

An alternative approach for creating a high
resolution linkage map is to use the average re-
lationship hetween recombination rate and
physical map distance to predict the linkage map
from the physical map of the markers. This is
particularly attractive with the availability of a
complete human genome sequence. Because the
sex-averaged length of the human linkage map
is roughly 3000 cM and the physical size of the
human genome is roughly 3 Gb [Ott, 1999] the
relationship 1 ¢cM = 1 Mb provides a rough in-
dex for translating the physical map into a link-
age map. By this approach, one could in principle
obtain a linkage map at any resolution. How-
ever, large variation in rates of recombination
across different regions of the genome should
be accounted for in such a method: this could
be done by implementing a specific model of
rate variation based on the variance observed
among regions in the low resolution linkage
map. Another solution would be to carry out
population LD studies to construct a high-
resolution linkage map of humans. Such a map
would be very valuable for studies of muta-
tion ages and other demographic parameters
in human populations.
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DISCUSSION

 The methods that have been developed for
estimating the age of a mutation using the varia-
tion observed at closely linked genetic markers
can be broadly categorized as either “direct” phy-
logenetic methods, which attempt to reconstruct
the topology and branch lengths of the underly-
ing gene tree, or “indirect” population genetic
methods that model the processes of recombi-
nation, mutation, and population demography,
to obtain estimators of mutation age that are not
dependent on a specific gene tree. Each approach
has its strengths and weaknesses. In general, sta-
tistical approaches should provide more accu-
rate inferences of allele age when alleles are
relatively young and no population subdivision
exists. Phylogenetic approaches, on the other
hand, should be more accurate for inferring ages
of very ancient mutations, especially in the pres-
ence of population subdivision, or other demo-
graphic complications.

The influence of population subdivision on
statistical estimators of the age of a mutation has
not been adequately explored; it is critical that
population subdivision be accounted for in fu-
ture theoretical developments as it is an impor-
tant aspect of human demographic history.
Although population geneticists have long been
interested in studying the influence of popula-
tion structure on gene frequencies in populations
at equilibrium [Wright, 1931; Kimura and Weiss,
1964; Maruyama, 1971], most human popula-
tions are far from equilibrium and, in any case,
the existing theory of genetic structure in subdi-
vided populations does not specifically address
the distribution of the ages of specific mutations
in either equilibrium, or non-equilibrium, popu-
[ations. New models and statistical methods are
needed.

A final factor that has received too little at-
tention is the geographic distribution of muta-
tions and the influence that this may have on
estimates of their ages. Intuitively, it should be
expected that more widespread mutations will
tend to be older, and we have suggested in a re-
cent study [Bertorelle and Rannala, 1998] that
the relative frequencies of alleles within differ-
ent populations may be used to infer the times
at which the populations diverged. There is likely
to be additional information about these diver-
gence times contained in the pattern of muta-
tions at linked loci associated with a particular

mutation among populations. Little formal math-
ematical analysis has been carried out on this prob-
lem, however, and so far few data are available.

An interesting potential application of meth-
ods for estimating ages of mutations is to the
study of patterns of selection in the human ge-
nome. Natural selection can potentially decouple
the frequency of a mutation from its age. For
example, two mutations with the same popula-
tion frequency may have very different ages if
one is neutral and the other is under the influ-
ence of overdominant selection. This decoupling
can provide a signal for detecting genes and
mutations that are under selection. If sclection
is operating on a mutation, this may potentially
result in a large difference between estimates of
the age of the mutation based on either varia-
tion at linked genetic markers, or the popula-
tion frequency of the mutation. This is because
the relative influence of selection on each type
of estimator may be quite different. A large dis-
crepancy between an estimate of mutation age
based on linked genetic markers and one hased
on the population frequency of a mutation may
therefore be an indication that selection is op-
erating on the mutation, even if both estimates
are obtained by assuming that the mutation is
neutral.

The intraallelic coalescent model considered
by Slatkin and Rannala [1997] is influenced by
selection and population growth through a com-
mon parameter which is a sum of the two ef-
fects. Thus, for a single locus, one cannot
separate the effects of selection versus popula-
tion growth. However, although a common
population growth rate applies across all genes
(and mutations) selection coefficients will usu-
ally vary from one gene and/or mutation to an-
other. This suggests that one could use the
intraallelic marker variation associated with sev-
eral different mutations to identify a subset that
are under selection. To do this, one would need
to jointly estimate the allele age and & (selec-
tion coefficient + population growth rate) for each
mutation. In some cases, the population growth
rate may be separately estimated from other sources
(demographic records for a founder population, for
example). Estimated values of € for particular mu-
tations that differ greatly from the population
growth rate might then indicate selection.

For many mutations involved in human dis-
ease the frequencies of particular mutations



among populations are now being catalogued
and potential information on variation at linked
markers might then also then be collected. The
use of linked genetic markers to study the ages
and histories of mutations in human populations
is only beginning. We expect that with improved
high-throughput genotyping methods and large-
scale population screening of disease mutations
in human populations many interesting patterns
will emerge. We also expect that population ge-
neticists will continue to develop better tools for
analyzing these data; improving existing ap-
proaches, as well as developing new methods that
are up to the tasks ahead.
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