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High-Resolution Multipoint Linkage-Disequilibrium Mapping in the Context
of a Human Genome Sequence
Bruce Rannala and Jeff P. Reeve
Department of Medical Genetics, University of Alberta, Edmonton

A new method is presented for fine-scale linkage disequilibrium (LD) mapping of a disease mutation; it uses multiple
linked single-nucleotide polymorphisms, restriction-fragment-length polymorphisms, or microsatellite markers and
incorporates information from an annotated human genome sequence (HGS) and from a human mutation database.
The method takes account of population demographic effects, using Markov chain Monte Carlo methods to integrate
over the unknown gene genealogy and gene coalescence times. Information about the relative frequency of disease
mutations in exons, introns, and other regions, from mutational databases, as well as assumptions about the
completeness of the gene annotation, are used with an annotated HGS, to generate a prior probability that a
mutation lies at any particular position in a specified region of the genome. This information is updated with
information about mutation location, from LD at a set of linked markers in the region, to generate the posterior
probability density of the mutation location. The performance of the method is evaluated by simulation and by
analysis of a data set for diastrophic dysplasia (DTD) in Finland. The DTD disease gene has been positionally
cloned, so the actual location of the mutation is known and can be compared with the position predicted by our
method. For the DTD data, the addition of information from an HGS results in disease-gene localization at a
resolution that is much higher than that which would be possible by LD mapping alone. In this case, the gene
would be found by sequencing a region �7 kb in size.

Introduction

Methods for mapping disease mutations by the use of
family-based linkage analysis have quite low resolution.
Even in situations in which hundreds of extended fam-
ilies are available, the methods normally do not provide
estimates of map distances at resolutions greater than
∼1 cM (Boehnke 1994). For positional cloning to be
practical, a much smaller candidate region is needed,
typically ∼0.1 cM (∼100 kb) or less. Linkage disequi-
librium (LD) mapping (Bodmer 1986; Lander and Bot-
stein 1986) takes advantage of the fact that the gene-
alogy underlying a sample of chromosomes from
unrelated individuals may be very large, incorporating
thousands of meiotic events. A disease mutation arises
on a chromosome with a specific marker haplotype, and
the disease and haplotype are initially associated in a
population. Over time, this association decays, because
of recombination, with a rate determined by the genetic
distances of markers from the disease mutation. Ex-
ploiting this relationship, one can use alleles at a linked
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marker—or haplotypes for several linked mark-
ers—from a sample of unrelated affected (and unaf-
fected) individuals, to perform mapping at a resolution
much higher than that which is possible by linkage anal-
ysis. LD mapping can often reduce the candidate region
for a mutation to !0.1 cM, at which point positional
cloning is feasible. LD mapping has been widely used
for the high-resolution–mapping phase preceding at-
tempts to positionally clone mutations underlying many
simple Mendelian disorders, especially in founder pop-
ulations (reviewed by de la Chapelle and Wright 1998).

A complete, 99.9% accurate, annotated human ge-
nome sequence (HGS) will be publicly available within
1–3 years (Lander et al. 2001). For many regions of the
genome, an assembled contig, with a complete sequence
and a high percentage of genes identified, is available
now. Positional cloning is no longer necessary with an
HGS in hand, and postgenome mappers will, instead,
focus on identification of polymorphisms of genes within
a candidate region. This is a much simpler prospect, be-
cause even a 1-cM candidate region will contain, on av-
erage, only ∼10 genes, given that the entire human ge-
nome is ∼3 Gbp (∼3,000 cM) in length and is likely to
contain ∼30,000 genes (Lander et al. 2001; Venter et al.
2001). LD mapping methods will remain useful in the
postgenome era, however, because, for the mapping of
mutations underlying complex disorders, they offer po-
tential advantages over linkage analysis—such as in-
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creased power when penetrance is low and a reduced
need for extended families—and because they can still
greatly reduce the amount of sequence that must be ex-
amined in order to identify a mutation. Unlike simple
Mendelian diseases, which most often result from non-
sense or other mutations that eliminate protein function
and that can be readily identified, the mutations under-
lying complex disorders will most often be missense mu-
tations (the polymorphisms at the apolipoprotein E locus
influencing susceptibility to late-onset Alzheimer disease
are an example; Corder et al. 1993). Comparisons of
frequencies of the mutant and nonmutant sequences in
affected and unaffected individuals will be one of the few
mechanisms for establishing a role for a polymorphism
in disease in these cases and for differentiating between
disease-susceptibility polymorphisms and neutral poly-
morphisms. To do this, a posterior density assigning
probabilities to particular exons will be very helpful in
reducing the number of polymorphic sites for which fre-
quencies must be compared between the two groups.

Much potential information about the position of a
disease mutation is contained in an annotated HGS of
a candidate region. This information needs to be effec-
tively incorporated into methods for fine-scale mapping.
Exons of genes in a candidate region will have the high-
est probability of harboring a disease mutation, but mu-
tations may also occur in introns, regulatory sequences,
and (with reduced probabilities) nongenic sequences.
Nongenic sequences may actually contain undiscovered
genes in a poorly annotated genome sequence, and
therefore some probability must also be assigned to such
regions as possible locations of disease mutations. Prior
information about the probability that mutations occur
in different regions (introns, exons, etc.) can be obtained
from databases of mutations identified in known disease
genes. A direct approach for utilizing an HGS in the
mapping of disease genes would be to sequentially com-
pare, between affected individuals and control individ-
uals, the sequences of exons, introns, and noncoding
DNA in a candidate region, to identify polymorphisms.
Although more efficient than positional cloning meth-
ods, this approach does not take full advantage of the
information available from both an HGS and LD among
markers on the sampled chromosomes. In addition to
narrowing the candidate region, LD contains potential
information about the probability that a mutation lies
within any subregion of a candidate region.

In the present study, we develop a Bayesian LD map-
ping technique that uses information from both an an-
notated HGS and a dense set of markers that are typed
in affected individuals and in normal individuals. An
HGS and information (from existing mutation data-
bases) specifying the locations of previously identified
disease mutations (in introns, exons, regulatory se-
quences, etc.) are combined to generate a prior prob-

ability distribution for the position of a disease muta-
tion. The method then generates the “posterior”
probability distribution for the position of the disease
mutation, given both the marker data and prior infor-
mation from an HGS and mutational databases. The
posterior distribution can be used to assign probabilities
that particular regions contain the mutation and to de-
cide which regions should be sequenced first in the
search for a mutation. The posterior probabilities ob-
tained in this way effectively incorporate information
from both the HGS and marker LD. Combining infor-
mation in such a way can lead to a very efficient lo-
calization of the mutation. In the case of the example
data analyzed in the present study, it reduced to !7 kb
the sequence required for analysis.

One advantage of LD mapping methods for fine-scale
mapping in the postgenome era is that the methods may
be more robust for the mapping of genes underlying
complex genetic diseases, which are typically polygenic
and modified by environment. It has recently been sug-
gested that genes underlying these disorders will fall into
two classes: (1) genes with small marginal effect and
high frequency and (2) genes with large marginal effect
and low frequency (Risch 2000). It should be possible
to identify the latter by means of essentially classic link-
age-mapping approaches (possibly using LD mapping
for the final positioning), whereas finding the former
will require new mapping strategies. The reason is that
a small marginal effect translates to a low penetrance
of the disorder and to a high prevalence of phenocopies.
Both factors reduce the power of linkage methods. LD
mapping offers a potential advantage for the mapping
of genes underlying complex diseases, because only af-
fected individuals are included, and the method is there-
fore insensitive to low penetrance. Reduced penetrance
affects only the sampling fraction in an LD mapping
study (see Rannala and Slatkin 1998), and this param-
eter can be shown to have little effect on accuracy. This
is a feature that is shared with association studies (e.g.,
see Risch and Merikangas 1996), although the two ap-
proaches are otherwise quite different.

Our simulations (see the “Example: DTD Mutation
in Finland” section, below) also suggest that LD map-
ping can be insensitive to a phenocopy rate as high as
10%. For higher rates, a phenocopy parameter (speci-
fying the probability that a chromosome is not de-
scended from the same disease mutation as are others
in the sample) can be included, although we do not
attempt to do so here. A second advantage of LD map-
ping versus linkage mapping, for studies of complex
diseases, is that the method potentially can be applied
to samples of affected individuals when there is no in-
formation on extended families. This is true only if the
phase of the haplotypes is known, however. Although
information about phase can be obtained by genotyping
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of relatives (e.g., see Sobel and Lange 1996), the need
for extended families in such a procedure eliminates one
of the major advantages of LD mapping versus linkage
mapping. An alternative approach for establishing the
phase is to use information from the same population
sample that is used for LD mapping (Clark 1990; Slat-
kin and Excoffier 1995). If this second strategy is
adopted, the additional uncertainty about phase (which
may be quite substantial) must be explicitly incorpo-
rated into the LD mapping method, to obtain realistic
confidence intervals for parameter estimates. This can
be done by an extension of the Bayesian approach out-
lined here, although, in the present study, we consider
only the situation in which phase is known.

Exact methods for LD mapping that have been de-
veloped thus far have considered only one or two linked
markers (Kaplan et al. 1995; Rannala and Slatkin
1998). Extensions to several linked markers (Terwilliger
1995; Xiong and Guo 1997; Graham and Thompson
1998; McPeek and Strahs 1999; Morris et al. 2000)
have used simple approximations for either the process
of recombination or the underlying genealogical rela-
tionships among chromosomes. These approximations
assume independence among variables where it does not
exist and may perform poorly in some situations (Ran-
nala and Slatkin 2000). Exact multipoint methods that
may be used with potentially large numbers of linked
markers are needed. It is clear from the results of the
present study (and previous analyses) that additional
markers can greatly reduce the size of a candidate re-
gion. LD mapping methods also must be extended to
explicitly model allelic and locus heterogeneity, phe-
nocopy, and population substructure. To account for all
of the potential problems arising for complex diseases
and samples of individuals from heterogeneous popu-
lations, as well as to allow an annotated HGS to be
incorporated into LD mapping, a very general and read-
ily extendable numerical framework is needed. In the
present study, we develop a new method for multipoint
LD mapping, using numerical Markov chain Monte
Carlo (MCMC) techniques that offer much flexibility.
With this framework, it is possible to incorporate ad-
ditional parameters and genetic models that are more
elaborate.

The Bayesian MCMC approach developed here al-
lows calculation of posterior probabilities by numeri-
cally intensive methods and does not rely on the com-
posite likelihood (or other) approximations employed
in previous methods. In particular, it explicitly integrates
over gene trees, avoiding the composite-likelihood ap-
proximation, for the underlying gene tree, that is used
by McPeek and Strahs (1999) and Morris et al. (2000).
Our method offers several potential advantages over
existing methods: information from an annotated HGS
and a mutational database can be readily incorporated

into a LD mapping study; more-realistic models that
integrate over uncertainties about the values of nuisance
parameters such as the population growth rate can be
used; and, potentially, genotypes—instead of haplo-
types—can be used, by treating the haplotypes as unob-
served random variables and by implementing a like-
lihood similar to that considered by Slatkin and
Excoffier (1995), thus eliminating the need for extended
families.

In the present study, we depart from traditional sta-
tistical approaches used in linkage mapping, which have
relied mainly on the method of maximum likelihood.
Instead, we develop a Bayesian LD mapping method
that generates the posterior density of the map position
of a disease mutation, relative to a set of linked markers.
The method leads to an easily interpretable measure of
uncertainty for parameter values and can be extended
to simultaneously predict both the genetic model (in-
corporating potential allelic or locus heterogeneity) and
the parameter values, although we do not do so here.
In the present study, we focus on (a) developing the
general theory underlying our method and (b) imple-
menting the method in a computer program. The prin-
cipal innovation is the explicit incorporation of an an-
notated HGS into LD mapping.

Theory

Let be a matrix of multilocus haplotypes forX p {X }ij

n chromosomes sampled from unrelated individuals af-
fected with a particular genetic disorder. It is assumed
that each chromosome carries the disease mutation, al-
though this assumption can be relaxed. Each chromo-
some is typed for L markers, where Xij is the marker
allele present at locus j on chromosome i. We define Xi

to be the multilocus haplotype of the ith chromosome.
It is assumed that, in its recent history, the population
from which the chromosomes are sampled has experi-
enced exponential growth (or decline) with rate y. If

, then the population size has remained constant.y p 0
Other demographic models can be incorporated easily.
Consider a disease mutation that first arose at time t0 in
the past, where time is measured in generations. Define
f to be the fraction of the total population of present-
day disease chromosomes (descended from this initial
mutant) that are sampled. For convenience, we define

to be a vector containing the demographicL p {f,y,t }0

parameters of the model.
Let Y0 be the multilocus haplotype present on the

chromosome on which the disease mutation first arose.
Let be a matrix of the allele frequencies onp p {p }ij

normal chromosomes, where pij is the frequency of allele
i at locus j. The gene tree underlying the sample of
chromosomes describes the sample’s history with re-
spect to the disease locus and is represented as t p
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Figure 1 Two hypothetical gene trees underlying a sample of
five disease chromosomes, illustrating the coalescent times t and the
tree topology T. The parameters denoted as t5, t4, t3, and t2 represent
the times, in the past, when chromosomes have coalesced to, respec-
tively, four, three, two, and one ancestral chromosome. The parameter
t0 is the time when the mutation first arose. The gene trees shown on
the left and right have different values for T but identical values for
t. T and t are independent parameters.

Figure 2 Three chromosomes typed for four marker loci, illus-
trating the relationship between the map distances of the markers,

, and the disease-mutation location v. In panel A, thed p {d ,d ,d }2 3 4

mutation is to the left of all the markers; in panel B, it is to the right
of all the markers; in panel C, it is flanked by markers to the left and
markers to the right. The disease mutation is represented as an ellipse
and is represented by “M” in panel A; the markers are represenetd as
rectangles and are labeled as “1”–”4” in panel A.

, where this is a vector of the labeled binary tree T{T,t}
with tips (representing the sampled chro-i p 1,2, … ,n
mosomes) and nodes , representing thei p n,n � 1, … ,2

times, in the past, at which the lineages arose fromn � 1
common ancestral chromosomes. The times at which
these shared ancestors (nodes) existed are referred to as
the “coalescence times” and are represented by t p

for all , where ti is the time, in the{t } i p n,n � 1, … ,2i

past, at which i mutant lineages coalesced to an-i � 1
cestral lineages.

A gene tree and the coalescence times on that tree are
illustrated in figure 1. We follow the approach of Ran-
nala and Slatkin (1998) and employ the intra-allelic
coalescent of a rare mutation, to determine the prob-
ability distribution of coalescence times and gene trees
in our analysis. Other coalescent models could also be
used in the same general framework. Let beY p {Y }ij

a matrix of the (unobserved) haplotypes foundn � 1
on the ancestral chromosomes at each node in the gene
tree, where . The ith ancestral haplo-i p n,n � 1, … ,2
type is associated with the ith internal node of the gene
tree and with the ith coalescence time. The mapL � 1
distances between markers are assumed to be known
and are represented by , for ,d p {d } j p 2,3, … ,Lj

where dj is the map distance between markers andj � 1
j. We define v to be the map distance between marker
allele 1 and a disease mutation M. The parameter v is
of specific interest for gene mapping: if , then thev ! 0
mutation lies to the left of marker 1; if , it liesv 1 Sdi

to the right of all the markers (see fig. 2). The symbol
Q denotes an annotated HGS spanning a region that
extends some distance beyond both marker 1 and
marker L; this provides some of the data for the anal-
ysis. The parameters and observed variables are sum-
marized in table 1.

The Posterior Distribution of Parameters

In the present study, a Bayesian multipoint LD map-
ping method is developed that is based on the following
probability-density function

f(v,Y,t,Y FX,L,p,d,Q)0

f(X,YFv,t,Y ,d,p)g(vFQ)h(Y Fp)r(tFL)0 0p . (1)
f(XFL,p,d,Q)

The first term in the numerator of equation (1) is the
likelihood. The remaining terms in the numerator are
prior probability distributions for each of the parame-
ters. By evaluating integrals and sums over the variables
of equation (1), we can obtain the marginal density of
any of the parameters v, Y, t, or Y 0 that happen to be
of interest. In practice, the marginal densities are not
easily obtainable by analytical approaches, and we de-
velop instead an MCMC method to obtain these mar-
ginal posterior probabilities. In particular, we will focus
on the marginal posterior probability density of v, rep-
resented by f(vFX,L,p,d,Q), which can be used to localize
a mutation relative to the marker loci and the gene
sequence.

We implement the Metropolis-Hastings (MH) algo-
rithm (Metropolis et al. 1953; Hastings 1970) in our
method. Related approaches have been used to estimate
population demographic parameters (such as the effec-
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Table 1

Definitions of Parameters of MCMC LD-Mapping Method

Parametera Description

Known:
X p {X }ij Multilocus haplotypes on the n sampled disease chromosomes that are typed for L markers, where Xij is the marker allele

present at locus j on chromosome i
∧ p {f,y,t }0 Demographic parameters, where f is the fraction of the total population of disease chromosomes included in the sample, y

is the population growth rate, and t0 is the age of the mutation
p p {p }ij Marker-allele frequencies in the population of normal chromosomes, where pij is the frequency of allele i at locus j

d p {d }j The map distances between markers, where dj is the map distance between markers and jL � 1 j � 1
Q Annotated HGS spanning a region that extends some distance beyond both markers 1 and L

Unknown:
Y p {Y }0 j Multilocus haplotype present on the chromosome on which the disease mutation first arose, where Yj is the marker allele

at the jth locus
Y p {Y }ij Ancestral haplotypes that existed on the internal nodes of the gene tree, where Yij is the marker allele present at then � 1

jth locus of the ith ancestral node
v Position of the disease mutation (in map units) relative to marker locus 1
t p {T,t} Gene tree T of the n disease chromosomes and the coalescence times ( ), where ti is the timen � 1 t p {t } i p 2,3, … ,n � 1i

at which i chromosomes coalesce to ancestorsi � 1

a Parameters that are assumed to be known a priori and parameters that are estimated by the algorithm are categorized as known parameters
and unknown parameters, respectively.

tive population size) from a sample of DNA sequences,
by use of likelihood-based approaches under a Kingman
(1982) coalescent model of population genealogy (Kuh-
ner et al. 1995), and to obtain marginal probabilities of
phylogenetic trees (Yang and Rannala 1997; Larget and
Simon 1999). Recently, Morris at al. (2000) presented
a Bayesian MCMC method for LD mapping, calculating
the posterior densities of v and other model parameters.
Their method differs from ours in several ways. The
most significant differences are that they used a com-
posite likelihood approximation (equivalent to assuming
that the gene tree is a star genealogy), rather than in-
tegrating over t, and, for v, they used a uniform prior
that did not incorporate prior information from an HGS.

Prior Distributions of Parameters

Prior probability distributions for the parameters Y0,
t, and v are needed to evaluate the numerator in equation
(1). Following the suggestion by Terwilliger (1995), we
used the observed frequencies of marker alleles on nor-
mal chromosomes, p, as the prior h(Y0Fp) for the prob-
ability distribution of marker haplotypes on the ances-
tral chromosome on which the mutation first arose, Y0.
For simplicity, we ignore uncertainties about p that arise
because p is estimated from a population sample of chro-
mosomes from normal individuals. This additional
source of uncertainty can be easily taken into account
by using a Dirichlet prior to model the probability den-
sity of p, given the population sample of chromosomes
(e.g., see Rannala and Mountain 1997). The probability
distribution of t is based on Rannala and Slatkin’s
(1998) coalescent model for a rare mutation and is com-
pletely determined by the demographic parameters L.

We considered two possible prior probability distri-
butions for v . The first assumes no prior information
and gives uniform probabilities to all possible v values
within a specified interval; this is the prior used by Mor-
ris et al. (2000). The second prior incorporates infor-
mation from an annotated HGS. In this case, we used
the observed distribution of mutations (among introns,
exons, and regulatory regions) in a database of the spec-
trum of point mutations observed in previously identi-
fied disease genes. The disease genes that we used to
establish the prior probability that the mutation resided
in any given region based on an annotated HGS were
those in the Human Gene Mutation Database Cardiff.
Probabilities were derived from the statistics page on
this web site, which includes all known point mutations
in the database. Probabilities were also obtained by
counting the types of mutations observed in a dozen
randomly chosen disease genes from several specialized
databases, and the numbers obtained were very similar
to those observed in the totals in the Human Gene Mu-
tation Database Cardiff.

If there are Z introns, exons, and either regulatory or
nongenic sequences, the candidate region is divided into
Z segments. The probability density of the mutation po-
sition at point zi in the ith segment is

f(z ,mutationFQ)if (z FQ) p .z i f(mutationFQ)

Because this prior probability will always occur in a ratio
in the MH algorithm (see the “MH Algorithm” section
of the Appendix), the equation simplifies to a ratio of
the relative mutation probabilities for the segments being
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considered as potential positions for the mutation. Mod-
els with more detail could be used, weighting nucleotides
differently according to the expected rates of transition
versus transversion, the codon-specific probabilities of
synonymous versus nonsynonymous mutations at par-
ticular sites, etc. Although coarse, the categories that we
consider in determining the prior are likely to be the
ones having greatest effect. It is probably still worthwhile
to consider models with more detail and additional cat-
egories, but their effects on the prior are likely be small.

Bayesian Inference of the Disease-Mutation Location

To obtain point estimates and confidence intervals for
parameters, we generated the posterior distributions of
v, t, Y, and Y0, using the MH algorithm (Metropolis et
al. 1953; Hastings 1970). In the present study, we fo-
cused on estimating the value of v (the position of the
disease mutation relative to marker 1) and obtaining a
confidence interval for this estimate. The posterior dis-
tribution of v was obtained by running the MCMC pro-
gram and sampling the value of v at each iteration (after
burn-in sufficient to allow the chain to reach a stationary
distribution). The frequency histogram of the values of
v (for bins of equal width) observed in the chain ap-
proximates the posterior probability that the true value
of v is contained within a particular range. The mode
of the posterior distribution was estimated as the interval
within which v was contained with the highest fre-
quency; this was taken as the best estimate of the true
value of v.

The a-percent credible set of values for v (a Bayesian
quantity analogous to the classic 95% confidence inter-
val [95%CI]) was obtained by successively adding in-
tervals, in rank order, to the credible set, according to
the frequency at which v was observed in the interval,
until the sum of the relative frequencies in the included
intervals exceeded a. The credible set of regions obtained
in this way need not be contiguous and may contain
several disjoint regions in which the mutation is likely
to reside. Mathematical details of the likelihood calcu-
lation for evaluation of the numerator of equation (1)
and of the implementation of MCMC to obtain the mar-
ginal posterior probabilities are given in the Appendix.

Example: DTD Mutation in Finland

DTD is an autosomal recessive disease whose main char-
acteristics are dwarfism and generalized joint dysplasia.
DTD is present at a high frequency in the Finnish pop-
ulation (1%–2% are carriers), presumably because of a
founder event. This population is thought to have de-
rived largely from a small founder population ∼2,000
years ago (∼100 generations). Linkage analysis of Finn-
ish pedigrees initially isolated the disease gene to a region

spanning ∼2 cM on chromosome 5q31-q34 (Hästbacka
et al. 1990). Its predicted location was further refined
by Hästbacka et al. (1992), who used an LD technique
based on Luria and Delbruck’s (1943) analysis of mu-
tation in bacterial populations. Positional cloning sub-
sequently showed that the location predicted on the basis
of LD mapping was very accurate (Hästbacka et al.
1994).

The gene containing the DTD mutation is known as
“SLC26A2” (solute carrier family 26 [sulfate trans-
porter]), or DTDST, and is located ∼70 kb proximal to
the CSF1R (colony-stimulating factor 1 receptor) gene.
The main mutation, present in ∼90% of Finnish disease
chromosomes, is a GTrGC transition in a 5′ UTR exon
of SLC26A2 (Hästbacka et al. 1999), which results in
decreased levels of mRNA. DTD in the Finnish popu-
lation has been used to test several other LD methods
(e.g., see Kaplan et al. 1995; Graham and Thompson
1998; Rannala and Slatkin 1998). With our MCMC,
we used the same data set to test the predicted mutation
location. The demographic parameters that we used in
our analysis were identical to those used by Rannala
and Slatkin (1998).

The haplotype frequencies used in our analysis are
from table 2 in an article by Hästbacka et al. (1992),
supplemented by unpublished data from J. Hästbacka.
Five markers were used, spanning an ∼20-kb region
within the CSF1R gene. The relative positions of the
markers, the surrounding genes, and the DTD mutation
are shown in figure 3. These markers include two
RFLPs—labeled “EcoRI” and “StyI” in figure 3—and
three microsatellites—labeled “TAGA,” “CCTT,” and
“CA.” The RFLPs are diallelic, and the microsatellite
alleles were dichotomized according to (presumed) an-
cestral versus nonancestral alleles. The 148 disease chro-
mosomes in the data set include 11 distinct haplotypes,
the most prevalent of which constitutes ∼53% of the
sample. On the basis of the allele frequencies observed
in a sample of normal chromosomes, this haplotype
would be present at a frequency of only , at�56.2 # 10
linkage equilibrium. The method presented in the pre-
sent study assumes linkage equilibrium among markers
on normal chromosomes, although this assumption can
be relaxed. A x2 test of linkage equilibrium for the sam-
ple of normal chromosomes from the data reported by
Hästbacka et al. (1992) was not significant, suggesting
that the assumption is valid for these data.

In recoding the microsatellites as biallelic, by pooling
alleles into two categories, we assumed that, in the foun-
der population, the DTD mutation was present only on
this haplotype. However, we also allowed for other po-
tential ancestral haplotypes (using, for the ancestral
haplotype, a prior distribution based on the observed
marker-allele frequencies on normal chromosomes) in
our analysis. We tried the analyses by either using the
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Table 2

Frequency of Marker Haplotypes on Disease
Chromosomes

No. of
Copies EcoRI TAGA StyI CA CCTT

Haplotypea

137 0 0 0 0 0
6 0 1 1 1 0
3 0 1 1 0 0
1 0 0 0 1 0
1 1 0 0 1 0

p0
b

.088 .361 .256 .161 .049

NOTE.—Data are those reported by Hästbacka et
al. (1992) and include unpublished frequencies pro-
vided to the authors by J. Hästbacka.

a Only the putative ancestral (represented by 0) and
derived (represenetd by 1) alleles are shown.

b Frequency of ancestral allele at each locus in the
sample of normal individuals.

Figure 3 Distribution of exons, introns, and regulatory and nongenic sequences in a 400-kb region, of chromosome 5, surrounding the
SLC26A2 gene that contains the DTD mutation. Exons are indicated by vertical lines, introns by the thick unbroken horizontal lines, and both
regulatory and nongenic regions by dotted horizontal lines. Both the scale of the physical distance (top) and the scale of map distance (bottom),
which is inferred from the physical distance (under the assumption that 1 cM p 1 Mb), are shown. The six genes identified in this region—PDE6A,
SLC26A2, CSF1R, PDGFRB, CDX1, and SLC6A7—are indicated below the gene diagram. The positions of the five markers—EcoRI, TAGA,
StyI, CA, and CCTT—in the CSF1R gene are indicated by labeled arrows, as is the exon of the SLC26A2 gene containing the DTD mutation.

prior (described above) based on the marker frequencies
on normal chromosomes or conditioning on the ances-
tral haplotype as being the most common haplotype on
disease chromosomes; the resulting posterior densities
were essentially identical. We have summarized the fre-
quencies of the five haplotypes (with data recoded as
binary) present on disease chromosomes, for the data
reported by Hästbacka et al. (1992), and these are
shown in table 2.

Weights for the sequence-based prior were chosen on
the basis of the frequencies, of known point mutations,
recorded at the Human Gene Mutation Database Car-
diff. The most recent statistics available for the database
give relative frequencies of 1.0 for missense/nonsense
mutations, .17 for splicing mutations, and .01 for reg-
ulatory mutations; for the purposes of our method, we
categorize these weights as exonic, intronic, and nonex-
onic/nonintronic, respectively; for the MCMC results
reported in the present study, we have used relative
weights of 1.0, .17, and .02, respectively, for these three
categories. The addition of weight to the nonexonic/
nonintronic region accounts for the possibility that there
are genes in the region that have not yet been discovered.
The amount of weight added to this category should
reflect one’s confidence in the completeness of the an-
notation in the region of interest.

The basic program requires that distances between
the markers be expressed in map units (1% recombi-
nation p 1 cM). If a sequence-based prior is to be used,
the relative positions of the markers and of the exon/

intron boundaries are required for all genes in the region
of interest. Among different databases, there are often
considerable differences between the exon numbers and
locations. For consistency, we used the current (as of
February 28, 2001) GenBank database, for all relative
distances. Physical distances were converted to map
units by assuming that 1 cM p 1 Mb. Alternatively,
one could use data from a linkage (or radiation hybrid)
map, to predict map distances directly.
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Figure 4 Posterior probability distribution of v, generated by
application of the MCMC algorithm to the data reported by Häst-
backa et al. (1992), for five markers—EcoRI, TAGA, StyI, CA, and
CCTT—when, for v, either a uniform prior probability distribution
(black line) or a prior distribution based on an HGS (gray bars) was
used. Exons are indicated by vertical lines, introns by the thick un-
broken horizontal lines, and both regulatory and nongenic regions by
dotted horizontal lines at the top of the figure. The dotted horizontal
line near the bottom of the figure indicates the cutoff for intervals to
be included in the Bayesian 95% credible set of values for either pos-
terior distribution. Proportions exceeding this cutoff are included in
the credible set (analogous to the classic 95%CI). The mode (i.e., the
most probable interval) and the second most probable interval of the
posterior distribution, obtained by use of an HGS, together contain
∼22% of the iterations of the MCMC and cover a 7-kb region that
includes the exon containing the DTD mutation.

Figure 5 Posterior probability distribution of v, generated by
application of the MCMC algorithm to the data reported by Häst-
backa et al. (1992), for one marker—EcoRI, when, for v, either a
uniform prior probability distribution (black line) or a prior distri-
bution based on an HGS (gray bars) is used. Exons are indicated by
vertical lines, introns by the thick unbroken horizontal lines, and both
regulatory and nongenic regions by dotted horizontal lines at the top
of the figure. The dotted horizontal line near the bottom of the figure
indicates the cutoff for intervals to be included in the Bayesian 95%
credible set of values for either posterior distribution. Proportions ex-
ceeding this cutoff are included in the credible set (analogous to the
classic 95%CI). The mode (i.e., the most probable interval) and the
second most probable interval of the posterior distribution, obtained
by use of an HGS, together contain ∼11% of the iterations of the
MCMC and cover a 7-kb region that includes the exon containing the
DTD mutation.

Figure 4 shows the posterior probability distribution
of the distance (in map units), represented by v, from
marker 1 of the DTD mutation, for the data reported
by Hästbacka et al. (1992) and estimated by MCMC
using either a prior probability density derived from an
annotated HGS for this region or a uniform prior. The
positions of exons, introns, and regulatory or nongenic
sequences (on the basis of a physical map and a scale
of 1 cM p 1 Mb) are shown at the top of figure 4. The
95% credible set for both analyses (HGS prior and uni-
form prior) is defined by the regions extending above
the dotted horizontal line at the bottom of figure 4. In
both analyses (HGS prior and uniform prior), the
greatest posterior probability was to the left of (i.e.,
centromeric to) the markers. This is the actual relative
position of the mutation. Although this was true for our

analysis of the five markers, an analysis of only the
single marker (i.e., EcoRI) analyzed by Rannala and
Slatkin (1998) placed equal probability to the left and
right of the marker when it was used with a uniform
prior for v, although it still correctly placed more prob-
ability to the left when it was used together with an
HGS prior (fig. 5). The four additional markers improve
the estimate substantially in this case, reducing the size
of the 95% credible set of values both when an HGS
prior is used and when it is not (compare figs. 4 and
5). This is despite the fact that all the additional markers
are in a relatively small region (within the CSF1R gene).
For the analysis using all five markers, the 95% credible
set for the case in which an HGS prior is used is ∼86%
of the width of the credible set obtained with a uniform
prior.
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Figure 6 Posterior probability distribution of v, generated by
application of the MCMC algorithm to the simulated data, for five
markers—EcoRI, TAGA, StyI, CA, and CCTT—located at positions
in the genome that are identical to the original marker positions re-
ported by Hästbacka et al. (1992), when, for v, either a uniform prior
probability distribution (black line) or a prior distribution based on
an HGS (gray bars) is used. The sample sizes and the demographic
parameters used to simulate the data are identical to those used for
analysis of the data reported by Hästbacka et al. (1992), and the
mutation is assumed to be in the same location. Exons are indicated
by vertical lines, introns by the thick unbroken horizontal lines, and
both regulatory and nongenic regions by dotted horizontal lines at the
top of the figure. The dotted horizontal line near the bottom of the
figure indicates the cutoff for intervals to be included in the Bayesian
95% credible set of values for either posterior distribution.Proportions
exceeding this cutoff are included in the credible set (analogous to the
classic 95%CI). The mode (i.e., the most probable interval) and the
second most probable interval of the posterior distribution, obtained
by use of an HGS, together contain ∼35% of the iterations of the
MCMC and cover a 7-kb region that includes the exon containing the
DTD mutation.

For the five-marker analysis, the two histogram bars
spanning the area from �.080 to �.087 cM contain
the largest proportion (∼22%) of iterations and also
contain the DTD mutation (when a relationship of 1
cM p 1 Mb is used to translate the physical map into
the genetic map). A rational approach in searching for
mutations by using posterior probabilities is to sequen-
tially sequence regions corresponding to the histogram
bars, taken in rank order, containing the greatest pro-
portion of iterations from the MCMC run. Following
that approach, we would, in this case, need to sequence
!7 kb in order to find the mutation. When only the
EcoRI marker was used (fig. 5), ∼11% of the iterations
were contained in the two histogram bars comprising
the largest proportion of iterations, and these spanned
an ∼7-kb interval that contained the exon carrying the
DTD mutation. Thus, including the four additional
markers approximately doubled the posterior proba-
bility of this mutation-containing region. On average,
for the five-marker analysis, use of an HGS prior would,
∼50% of the time, require examination of 39% as much
sequence as would be required when a uniform prior
was used (i.e., the 50% credible set is ∼39% as wide
for an HGS prior as it is for a uniform prior).

Simulation was also used to evaluate the performance
of the method for the conditions found for the DTD
mutation in Finland. Using identical values for the dem-
ographic parameters and the position of the DTD gene
mutation in the human genome, we simulated an iden-
tical number of disease chromosomes by first simulating
the gene tree and coalescence times and then simulating
chromosomes under the specified recombination pro-
cess on the gene tree. In the simulation of chromosomes
by recombination on the gene tree, it was assumed that
recombination events in the ancestry of the sampled
chromosomes occurred only in heterozygotes (as as-
sumed in the model used to derive the transition prob-
abilities); it was also assumed that the recombination
rates corresponded exactly to those predicted by the
physical map with 1 cM p 1 Mb. The data generated
in the simulation was analyzed by our MCMC program,
under the assumption that the position of the disease
mutation was unknown.

The results of the analysis of the simulated data are
shown in figure 6. The posterior density is very similar
to that obtained in our analysis of the original data,
except that (a) a greater proportion of iterations were
contained in the region surrounding the actual position
of the mutation (when the HGS prior was used) and
(b) a greater proportion of iterations were to the left of
the markers (the actual position relative to the markers),
both with and without an HGS prior. The two histo-
gram bars containing the most iterations (see fig. 6)
contained 34.5% of the total iterations and spanned a
region of ∼7 kb that contained the exon carrying the

DTD mutation. The higher posterior probabilities, in
this case, may reflect the fact that the demographic pa-
rameters were known with absolute certainty for the
simulated data but not for the actual data. This could
cause lower posterior probabilities for the actual data,
reflecting a poorer fit of the data to the model.

Simulations were also used to evaluate the sensitivity
of the results to either potential locus heterogeneity or
phenocopies (both of which can be expected to occur
in complex genetic disease). In these simulations, dem-
ographic and genetic conditions were again assumed to
be identical to those reported by Hästbacka et al.
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Figure 7 Log-likelihood and value of statistic (both defined in the Appendix), at each iteration of the chain in two MCMC runs�R
analyzing the data reported by Hästbacka et al. (1992), for five marker loci. The two runs are shown separately, as black and gray lines, in
the upper and lower panels. The upper panel shows the result when an HGS prior is used, and the lower panel shows the result when a uniform
prior is used. To diagnose convergence, each run actually included two chains running in parallel. Similar log-likelihoods and a value of �R
approaching 1.001 indicate convergence of the chains. In this case, the chains do not converge after 150,000 iterations but do converge after
500,000 iterations. Comparison of the two panels shows that there appears to be little difference, in the rate of convergence, between the chains
run with an HGS prior and the chains run without an HGS prior.

(1992), except that 10% of the “disease” chromosomes
were actually drawn from the population of normal
chromosomes. This phenocopy rate had little effect on
the posterior probabilities of disease-mutation location.
The two histogram bins containing the highest posterior
probabilities, in this case, spanned the interval from
�.82 to �.85 cM, which differs only slightly from the
interval of �.80 to �.87 cM, which is spanned by these
two bins for the original data.

If an annotated HGS is available, as well as a large
number of mapped polymorphic marker loci (e.g., sin-
gle-nucleotide polymorphisms), this will influence the
choice of marker locations. In fact, markers could con-
ceivably be chosen in a way that would optimize the
resolution of an LD mapping study. The markers used
by Hästbacka et al. (1992) are probably in a region
more confined than that which would be used in a con-
temporary study. We examined the effect of marker lo-
cation on the posterior distribution of disease location,
by again simulating the data under conditions identical
to those used by Hästbacka et al. (1992), but with mark-
ers positioned uniformly over the interval from �.4 to

.4 cM. Marker position has a large effect on the pos-
terior probability in this case, significantly improving
the localization of the mutation. The two histogram bins
containing the highest posterior probability accounted
for 34.5% of the probability in simulations with mark-
ers in their original positions, but, for the simulated data
with uniformly spaced markers, this probability in-
creased to 60.4%. The width of the 95% credible set
also decreased dramatically.

Another potential impact of the prior is on the rate
of convergence characteristic of the MCMC algorithm.
We used the approach of Gelman (1996), which com-
pares between-chain and within-chain variances, to di-
agnose convergence (see the Appendix). A more infor-
mative prior might be expected to increase the rate of
convergence, since it causes the chain to spend more
time in regions of high posterior probability. Figure 7
shows the log-likelihood and the value of (defined�R
in the Appendix) at each of 150,000 iterations for a run
with two simultaneous chains analyzing the data re-
ported by Hästbacka et al. (1992), both with and with-
out an HGS prior. There is little difference between the
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convergence rates of the two runs: at 150,000 iterations,
the run with an HGS prior has a value of �R p

whereas the run with a uniform prior has a1.00372
value of , indicating that neither chain�R p 1.00253
has converged. Both chains appear to converge after
∼500,000 iterations (not shown), at which point

, and that was the number of iterations�R ! 1.0001
used for our burn-in period.

Discussion

In the present study, we have developed, for high-reso-
lution multipoint LD mapping, a new method that uses
information from both the LD observed among multiple
markers in a sample of disease chromosomes and an
annotated HGS. Incorporating information about the
distribution of exons, introns, and either regulatory or
nongenic sequences in a candidate region can greatly
reduce the extent of the credible set of values for v, as
can the inclusion of additional marker loci in the region.
Surprisingly, the addition of markers in a region appears
to improve estimates of disease location even if the ad-
ditional markers are quite close to one another and all
are either telomeric or centromeric to the disease mu-
tation. Presumably, this is because the tendency of re-
combination events to occur with increased frequency
at markers most distal to the disease mutation conveys
significant information about location. For example, in
the case of the Hästbacka et al. (1992) data that we
analyzed, all markers were positioned within a relatively
small region telomeric to the DTD mutation, yet addi-
tional markers further refine the estimated location of
the DTD mutation, compared with the estimate based
on a single marker (i.e., EcoRI). Other simulations, not
presented here, suggest that, in the case of a uniform
prior for v, the posterior probability density of v un-
dergoes a quantitative change from a bimodal distri-
bution (when either the markers are either all telomeric
or all centromeric to the mutation) to a unimodal dis-
tribution (when markers flank both sides of the muta-
tion). Thus, the relative shape of the posterior distri-
bution may also convey information, at a gross level,
about the markers’ positions relative to the position of
a mutation. Possibly, one could exploit this positional
effect to develop a method for testing the hypothesis that
a set of markers flank a mutation (or are, instead, either
all telomeric or all centromeric to it), to guide researchers
in choosing additional markers in narrowing the can-
didate region.

Bayesian posterior probabilities can be used in vari-
ous ways once they have been estimated for a set of
data; for example, the probability that a mutation lies
between any pair of markers i and j (given that it is
located somewhere in the prespecified interval used for
the MCMC analysis) is simply the frequency of values

of v in the region in the MCMC run, whereD ! v ! Di j

Di is the position of marker locus i relative to marker
locus 1 (see the Appendix). In addition to their use in
predicting either the relative or the absolute location for
v, the posterior probabilities can be directly incorpo-
rated into the final sequencing phase of a gene-mapping
study. By rank-ordering intervals according to the fre-
quency with which v is observed in each interval in the
MCMC run, one can, in searching for a gene, succes-
sively sequence each interval, from most probable to
least probable. This is expected to be much more effi-
cient than simply beginning at the mode (of either the
likelihood or the posterior probability distribution) and
sequencing regions while moving outward from the
mode. In many cases, with multiple loci and an HGS
prior, the posterior density will be multimodal, and the
most efficient approach for finding the disease mutation
will be to sequence several disjunct regions. Sequencing
the rank-ordered intervals from the posterior density,
as suggested in the present study, seems to be an optimal
solution when several different regions are all likely
locations.

Another innovation made possible by a Bayesian ap-
proach to high-resolution mapping is an analysis of the
projected cost of finding the gene if sequencing is ini-
tiated with use of the existing posterior probability dis-
tribution is used. This is a straightforward application
of decision theory (e.g., see Berger 1985). If, in a sample
of disease chromosomes and normal chromosomes, in-
tervals are sequenced in rank order according to their
posterior possibilities, the expected cost in finding the
gene is

V i

E(C) p C(z )f(v � iFX,Q,F) ,�� i
ip1 jp1

where E is the expectation, V is the number of intervals
into which the data from the MCMC analysis have been
binned, C(zi) is the expected cost of sequencing the ith
interval, zi, for a sample of disease chromosomes and
normal chromosomes, and is the esti-f(v � iFX,Q,F)
mated posterior probability that the mutation lies in the
ith interval, given the haplotype data X, the HGS data
Q, and the remaining parameters (L, p, etc.), which col-
lectively are represented by F. If the expected cost re-
mains high, one could consider sampling either addi-
tional disease chromosomes or additional markers, to
attempt to further refine the posterior probability den-
sity before initiating the sequencing phase of the project.

Because disease chromosomes are not independent
random variables (in that they are related by a common
underlying genealogy), it is not obvious that the sam-
pling of additional disease chromosomes will have a
large effect on the posterior distribution of the mutation
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location. We investigated the effects of sampling in the
Hästbacka et al. (1992) study by performing the anal-
ysis on random subsamples of disease chromosomes
from the original data. We generated the posterior dis-
tribution for subsamples of 25, 50, and 100 disease
chromosomes. For the complete sample of 148 chro-
mosomes, the proportion of observations in the two
histogram bins with highest posterior probability was
22%, whereas, for the subsamples, the corresponding
proportions were 9.4% (25), 8.3% (50), and 12.4%
(100). Similarly, the total width of the 95% credible set
was 0.21 cM for the complete sample of 148 chro-
mosomes, whereas for the subsamples the correspond-
ing widths were 0.62 cM (25), 0.28 cM (50), and 0.27
cM (100). It is clear from these results that increasing
the sample size even to 1100 continues to have an im-
portant effect in narrowing the possible position of the
disease mutation. The effect of sampling additional
marker loci needs to be carefully studied before any
general conclusions are reached; intuitively, one would
expect that increasing the density beyond some thresh-
old would provide diminishing returns, since few or no
recombination events will have occurred between
nearby markers in the sample. Simulations suggest that
the computing time increases as an approximately linear
function of the number of marker loci. On a 1-Ghz
Pentium III computer, the five-marker Hästbacka et al.
(1992) data required ∼4 h of computing time, suggesting
that analyses of up to �20 marker loci should be fea-
sible, even for relatively large samples of �100 disease
chromosomes.

The Bayesian approach developed here can also be
readily extended to allow allelic and locus heterogeneity,
by integrating over different genetic models. It may even
be possible to consider models with more than one dis-
ease locus in a population (a consideration particularly
important for studies of complex genetic diseases), al-
though this will obviously reduce the power and neces-
sitate a larger sample of disease chromosomes. The
method can also be extended to allow genotypes—rather
than haplotypes—as the observed data, eliminating the
need for extended families as a requirement for deduction
of haplotype phase. However, such an extension would
likely greatly reduce the power of the method and would
only be rational in cases in which extended families are
not available. Hybrid methods allowing samples both
with and without extended families should also be pos-
sible and may be a good alternative to approaches that
completely exclude family data, potentially offering in-
creased power. Although we do not present the afore-
mentioned extensions here, we are currently implement-
ing them in our computer program, and they will be made
publicly available as they are completed.

A Bayesian approach to multipoint mapping incor-

porating information from LD, an annotated HGS, and
a human mutation database provides a powerful new
technique for high-resolution gene mapping in the post-
genome era. Although Morris et al. (2000) have recently
proposed a Bayesian method for LD mapping, our
method offers at least two improvement over theirs.
First, we use prior information about the disease-mu-
tation location, which is available from an annotated
HGS, whereas Morris et al. assume no prior informa-
tion about v. Our analyses indicate that much infor-
mation is available from an HGS, making our approach,
which explicitly incorporates this information, more
powerful. Second, we explicitly integrate over the pos-
sible gene trees underlying the disease chromosomes,
taking full account of this source of uncertainty, whereas
Morris et al. apply a composite likelihood to approx-
imate the likelihood function in their Bayesian method,
an approach that may not provide accurate posterior
probabilities in all cases (for a discussion of composite
likelihood, see Rannala and Slatkin 2000).

An annotated HGS is a remarkable resource for gene
mappers, but new methods are needed for gene mapping
that take explicit account of an available sequence. Ex-
isting parametric linkage methods for the mapping of
disease mutations by either analysis of marker segre-
gation on pedigrees or analysis of pairs or triplets of
affected relatives are based almost exclusively on max-
imum likelihood (see Ott 1999) and, therefore, also as-
sume a uniform prior for the disease-mutation location.
Currently, we are developing Bayesian methods for link-
age analysis that are analogous to the LD mapping
method presented here and that use information from
an annotated HGS as a prior distribution for the po-
sition of a disease mutation (author’s unpublished re-
sults). In gene-rich regions, the scale of linkage mapping
is such that inclusion of information about genes in a
region may have little effect on the posterior probabil-
ities (because a candidate region of 10 cM, which is
typical for linkage mapping studies, will contain 1100
genes on average, leaving a potentially large number of
possible positions for the mutation). However, if the
mutation happens to lie in a region in which genes are
sparse, or if particularly informative samples of relatives
are available, using an HGS prior may reduce the size
of the candidate region to the point at which sequencing
of the mutation is feasible. In any case, implementing
the HGS as a prior is more appropriate (and likely more
powerful) than simply scanning the candidate region for
potential genes after a linkage analysis (ignoring the
HGS data) has been performed. Much theory remains
to be developed if we are to take full advantage of an
annotated HGS in disease-mapping studies, and we
view the methods presented here as only a first step.
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Program Availability

The program DMLE� was used for the analyses pre-
sented in the present study. The program (for the Win-
dows and UNIX operating systems) is available free of
charge from the corresponding author (see the Bruce
Rannala’s Research Group [Department of Medical Ge-
netics, University of Alberta] web site).
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Appendix

To numerically evaluate the marginal posterior distributions of the parameters Y0, Y, t, and v, we used an MH
(Metropolis et al. 1953; Hastings 1970) algorithm. To implement the algorithm, it must be possible to evaluate
the statistical likelihood of the data. The likelihood plays an important role in the evaluation of the Hastings ratio
in the MH algorithm. As well, “nominating” functions must be developed for proposing new values of the param-
eters, at each step of the chain. The Hastings ratio determines the probability that the proposed values are either
accepted or rejected. Here, we present the basic form of the likelihood function, as well as new results for the
probabilities of multipoint transition between haplotypes, which are needed for evaluation of the likelihood. We
also outline the nominating functions and the sequence of steps used in the implementation of the MH algorithm.

Figure A1 Diagram illustrating parameters involved in calculation of the likelihood of a sample of five disease chromosomes, when
equation (A1) is used. The sampled haplotypes—X1, X2, X3, X4, and X5—are represented as unshaded circles, and the unobserved ancestral
haplotypes—Y1, Y2, Y3, Y4, and Y5—are represented as shaded circles. The branches on which transitions from the ancestral to the sampled
haplotypes arise occur in the first product in the likelihood represented by equation (A1) and are indicated by the thicker lines (V1–V5); the
branches on which transitions between ancestral haplotypes arise occur in the second product in the likelihood represented by equation (A1)
and are indicated by the thinner lines (W1–W4). The branch lengths V and W are determined by the tree topology and the coalescence times,
jointly represented by t.
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Likelihood

The likelihood of the sampled disease chromosome haplotypes (and unobserved ancestral haplotypes), given the
parameters in the model, is

n n�1

f(X,YFv,t,Y ,d,p) p � f(X FY,Y ,v,d,p,v) #� f(YFY,Y ,v,d,p,w) , (A1)0 i 0 j 0
ip1 jp1

where is a vector of the lengths of the terminal branches on the gene tree and wherev p {v , … ,v } w p1 n

is a vector of the internal branches. These quantities, which are determined by the tree topology and{w , … ,w }1 n�1

the coalescent times, are illustrated in figure A1. The first product in equation (A1) calculates the n probabilities
of transition to the states at the tips of the gene tree (haplotypes observed on the sampled chromosomes) from the
haplotype states of the ancestors. In figure A1, the branches joining the sampled chromosomes to their ancestors
are indicated by the thicker lines (the parameters v define the lengths of these branches), the ancestral haplotypes
are represented as shaded circles, and the sampled (observed) haplotypes are represented as unshaded circles. The
second product calculates the transitions, among the unobserved ancestral haplotypes, on the internal branchesn � 1
of the gene tree. The branches joining the ancestral haplotypes are indicated by the thinner lines in figure A1 (the
parameters w define the lengths of these branches).

Haplotype-Transition Probabilities

Here, we derive the probability that an ancestral chromosome carrying disease mutation M and with haplotype
Yh has, after t generations, a descendent that bears haplotype Xh. This transition probability is applied repeatedly,
to evaluate the terms f(XiFY,Y0,v,d,p,v) and f(YjFY,Y0,v,d,p,v) in the likelihood expressed in equation (A1). For
simplicity, we consider here only biallelic markers, denoting the two alleles as “0” and “1.” The method can be
easily extended to any number of marker alleles. It is assumed that the frequencies, p, of marker alleles on normal
chromosomes are known and that markers are in linkage equilibrium on normal chromosomes, but both assumptions
can be easily relaxed. The between-marker map distances, d, are assumed to be known. In practice, these will be
inferred from a genetic-linkage map, a radiation-hybrid map, or a physical map (e.g., under the assumption that
1 cM ∼ 1 Mb). If there are L marker loci, there will be interlocus map distances. Let K be the first markerL � 1
to the right of M. If , the mutation, M, is to the left of all the marker loci, whereas it is defined to be to theK p 1
right of all the marker loci if ; if , then M is flanked by marker loci on both the right andK p L � 1 2 � K � L
left. For convenience, we define the linearly transformed variables . Recall that v is the distance between1D p S di jp2 j

the disease mutation and marker locus 1. Note that when the mutation lies to the left of all the markersv ! 0
( ) and that when it lies to the right of all the markers ( ). We focus here on the problemK p 1 v 1 D K p L � 1L

of calculating the probabilities of transition between haplotypes when the map position of M relative to marker
1, denoted by v, is specified. The relationships of the various parameters outlined above are illustrated in figure
A2.

For simplicity, we assume that there is no interference of recombination between the different intervals separating
the marker loci, so that the map distances are additive (i.e., the expected recombination rate between markers 1
and 3 is ). This is quite realistic for small regions, but models of recombination that are more complex cand � d2 3

be implemented by use of the general framework outlined here. To simplify the exposition, we initially focus on
the probability calculations in the case in which all markers are to the right of M (i.e., ). The probabilityK p 1
calculations for other positions of M are simple extensions of this result. This situation is depicted in panel A of
figure A2.

In a descendent of a particular mutation-bearing chromosome, after t generations, the number of recombination
events, R, that occur in the chromosomal region spanning the distance from the mutation on the left of marker
locus 1 to the last marker on the right (marker locus L) follows a Poisson distribution, with the parameter
( . Any recombination events outside this interval (i.e., to the left of M or to the right of L) do not affectD � v)tL

the multilocus haplotype associated with the disease mutation and, therefore, can be ignored. According to standard
theory for Poisson processes (see Medhi 1994), the positions of R recombination events on this interval follow
independent uniform densities. The probability density (conditional on R) of the recombination event nearest to
the mutation, represented by z, is then the smallest-order statistic of R independent uniform random variables on
the closed interval [M,L] of length . The probability density function is thenD � vL
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Figure A2 Three chromosomes typed for four marker loci, illustrating the parameters used in calculation of the haplotype-transition
probabilities. The markers are represented as rectangles, and the mutation is represented as an ellipse. The marker-allele designations are shown
above each chromosome, and the marker-locus labels are shown below each chromosome. All markers are biallelic, with “0” denoting the
ancestral allele. The parameter K is the marker immediately to the right of the mutation; AR is the locus nearest to M, on the right, with a
nonarrested allele; and ALis the nearest such locus on the left. In panel a, ; in panel b, and ; in panel c, andA p 3 A p 3 A p 0 A p 4R R L R

.A p 1L

R�1R z
f (zFR,D ,v) p 1 � .z L ( )D � v D � vL L

The joint density of z and isR � 1

� j�1 �(D �v)t jLj z e [(D � v)t]L �tzf (z,R � 1Ft) p 1 � p te .�z ( )D � v D � v j!jp1 L L

Note that

(D �v)L

�tz �(D �v)tLte dz p 1 � e ,�
0

which is just the probability that one or more recombination events occur in the interval [M,L]. The probability
that the recombination event nearest to the mutation occurs between markers and i isi � 1

Di

�tD �tDi�1 if (zFD ,t)dz p e � e . (A2)� z L
D 1i�

If M is to the left of all the markers (so that ), it is straightforward to derive the marginal probability of Xh,v ! 0
given v, t, and Yh. Let AR be the nearest marker, to the right of M on haplotype Xh, that carries an allele that
differs from the ancestral allele of haplotype Yh (see fig. A2). If , thenA p 1R

L

vtf(X FY ,v,d,p,t) p (1 � e )� p(X ) ,h h hi
ip1

where p(Xhi) is the frequency, on normal chromosomes, of the allele observed at marker i on chromosome h. This
result can be understood as follows. The probability that one or more recombination events have occurred in the
interval [M,1] is , and this is multiplied by the probability of the alleles observed at all markers to the rightvt1 � e
of M, a probability that is the product of their frequencies on normal chromosomes. This is because linkage
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equilibrium is assumed for marker loci on normal chromosomes and all alleles to the right of the recombination
event nearest to M are derived, by recombination, from normal chromosomes. If , thenA 1 1R

L

vt vtf(X FY ,v,d,p,t) p (1 � e )� p(X ) � e Q ,h h hi
ip1

where

LAR

�D t �D ti�1 iQ p (e � e )� p(X ) ,� hl[ ]
lpiip2

and, by definition, . Note that, if all markers to the right of M carry the ancestral allele, thenD p 0 A p L �1 R

, and we define . To understand the equations given above, note that the term is once again thevt1 D p � 1 � eL�1

probability that one or more recombination events have occurred in the interval (M,1), whereas the next term in
the product is, again, the probability of the alleles observed at the marker loci to the right of M, a probability that
is the product of their frequencies on normal chromosomes.

The new term on the right, evt, is the probability that no recombination events occur in the interval (M,1), and
this is multiplied by Q, which accounts for the probabilities of the alleles observed at markers 2 through L, with
allowance for all possible positions of the recombination event nearest to marker 1, which can be between any of
the markers 2,3,…,AR. Note that the probability that the recombination event nearest to marker locus 1 lies between

and i is given by equation (A2) and that the probability of the observed markers is the product of the allelei � 1
frequencies, on normal chromosomes, of the alleles found at markers i, . The equations given below, fori � 1, … ,L
other possible positions of the mutation, can be derived in a similar way, although the expressions become more
complex. If M is to the right of marker L, and if we define AL as being the locus, on the left, that is nearest to M
and that has a nonancestral allele, then, if , the probability isA p LL

L

�(v�D )tLf(X FY ,v,d,p,t) p [1 � e ]� p(X ) .h h hi
ip1

If , the probability isA ! LL

L

�(v�D )t �(v�D )tL Lf(X FY ,v,d,p,t) p U1 � e I � p(X ) � e H ,h h hi
ip1

where

i�1l

�(v�D )t �(v�D )ti i�1H p Ue � e I � p(X ) .� { }hl
lp1ipA �1L

Note that, if haplotypes Xh and Yh are identical at all markers to the left of M, then, by definition, . WeA p 0L

now consider the case in which M lies between markers and K. Again, define AL as the nearest marker, toK � 1
the left of M, that carries a different allele on Xh (versus Yh), and define AR as the corresponding nearest marker
to the right. It is easiest to consider separately the probability calculations for the four distinct possibilities: (1)

, ; (2) , ; (3) , ; and (4) , . In the firstA p K � 1 A p K A ! K � 1 A p K A p K � 1 A p K A ! K � 1 A 1 KL R L R L R L R

case (i.e., , ), the probability isA p K � 1 A p KL R

L K�1

�(D �v)t �(v�D )tK K�1f(X FY ,v,d,p,t) p U1 � e I � p(X ) # U1 � e I � p(X ) .h h hi hi
lpK lp1

In the second case (i.e., , ), the probability isA ! K � 1 A p KL R

L K�1

�(D �v)t �(v�D )t �(v�D )tK K�1 K�1f(X FY ,v,d,p,t) p U1 � e I � p(X ) # U1 � e I � p(X ) � e H ,{ }h h hl hl K
lpK lp1
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where

iK�2

�(v�D )t �(v�D �1)ti iH p Ue � e I � p(X ) , (A3)� { }K hl
lp1ipA �1L

and, by definition, . In the third case (i.e., , ), the probability isD p v A p K � 1 A p K0 L R

K�1 L

�(v�D )t �(D �v)t �(D �v)tK�1 K Kf(X FY ,v,d,p,t) p U1 � e I � p(X ) # U1 � e I � p(X ) � e Q ,{ }h h hl hl K
lp1 lpK

where

LAR

�D t �D ti�1 iQ p Ue � e I � p(X ) . (A4)� { }K hl
lpiipK�1

In the fourth case (i.e., , ), the probability isA ! K � 1 A 1 KL R

K�1 L

�(v�D )t �(v�D )t �(D �v)t �(D �v)tK�1 K�1 K Kf(X FY ,v,d,p,t) p U1 � e I � p(X ) � e H # U1 � e I � p(X ) � e Q ,{ } { }h h hl K hl K
lp1 lpK

where HK and QK are given, respectively, by equations (A3) and (A4) above.

MH Algorithm

The MH algorithm (Metropolis et al. 1953; Hastings 1970) is a numerical procedure that can be used to study
many properties of a multivariate probability distribution that are difficult—or impossible—to study by analytical
methods. For Bayesians, the interest is usually in conditional and marginal probability distributions. The utility of
the MH algorithm is that, to obtain the marginal and conditional distributions, one need only be able to calculate
the joint probability distribution. For example, in the simple case of two random variables, A and B, if it is possible
to calculate analytically the probability f(A,B), then this can be used to obtain f(A), f(B), f(AFB), and f(BFA),
without evaluation of potentially difficult integrals, or sums. The strategy is to construct a Markov chain with a
stationary distribution of either f(A,B), f(AFB), or f(BFA), to iterate this chain until it reaches stationarity, and then
to use observations regarding the chain to make inferences about f(A), f(B), f(AFB), or f(BFA). The time (proportion
of iterations) that the chain spends at each value of a variable is proportional to the marginal probability that the
variable takes that value. The marginal distributions can be obtained from the chain by simply collecting values
exclusively for A or B. The conditional probability, f(AFB), for example, is obtained by fixing the value of one
variable (in this case, B) and iterating the chain, evaluating f(A,B) at each iteration.

To generate observations from the density f(AFB), we begin the chain at iteration , with an arbitrary valuei p 1
for A[1], and, for A[2], simulate a new potential value, represented by A*, with probability q(A*). The variable
A* is accepted and becomes A[2], with probability

∗f(A ,B)qA([1])∗a (A FA[1]) p min 1, ; (A5)A ∗{ }f(A[1],B)q(A )

otherwise, . Equation (A5) is referred to as the “Hastings ratio.” In general, at the ith iteration, theA[2] p A[1]
proposed state is accepted with probability aA(A*FA[i]). The precise form of the nominating density function q is
arbitrary, although it must generate a Markov chain that is irreducible and aperiodic (Hastings 1970). However,
the choice of the function q often greatly influences the number of iterations necessary for the chain to reach
stationarity. If , so that q is symmetrical, then equation (A5) reduces to∗q(A ) p q(A[i])

∗f(A ,B)∗a [A FA(i)] p min 1, .A { }f(A[i],B)
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Implementing the Algorithm

The implementation of the MH algorithm used in our program has four steps during each iteration of the chain.
At each step, a different set of parameters are potentially modified. These steps are outlined below. All our choices
for the function q are symmetrical, and q therefore does not appear in the Hastings ratio.

Modifying the Gene Tree.—The tree topology and coalescence times at iteration i, represented by t[i], are modified
to be , with probability∗t[i � 1] p t

∗ ∗f(X,YFv,Y ,d,p,t )f (t FL)0 t∗a (t Ft[i]) p min 1, .t { }f(X,YFv,Y ,d,p,t[i])f (t[i]FL)0 t

The nomination function q([t*Ft[i]) that we use is the “global” tree rearrangement algorithm described by Larget
and Simon (1999). The density is scaled by a single parameter, dt, that determines the relative size of changes in
the gene tree. This algorithm modifies the tree topology and the coalescence times simultaneously.

Modifying the Disease-Mutation Position.—The disease-mutation position at iteration i, represented by v (i), is
modified to be , with probability∗v[i � 1] p v

∗ ∗f(X,YFv ,Y ,d,p,t)f (v FQ)0 v∗a (v Fv[i]) p min 1, .v { }f(X,YFv[i],Y ,d,p,t)f (v[i]FQ)0 v

The nominating function qv(v*Fv[i]) that we use is based on a sliding window in the interval of permissible values
for v, defined to be (vL,vU), where vL and vU are, respectively, the lower and upper bounds of the permissible values
for v. A variable z is chosen from the uniform interval (�dv,�dv), and . If or , then v* is∗ ∗ ∗v p v � z v 1 v v ! vU L

reflected back onto the interval (vL,vU), by an amount or ; for example, if ,v � z � v v � z � v v p �.08 z p �U L

, and , then . The magnitude of dv determines the size of the moves and can be used to∗.05 v p �.10 v p �.07L

adjust the mixing properties of the chain. In the absence of information from an HGS, , and∗f (v FQ) p f (v[i]FQ)v v

these terms disappear from the Hastings ratio.
Modifying the Haplotype on Which the Disease Mutation Arose.—At iteration i, the ancestral haplotype on which

the disease mutation first arose, represented by Y0[i], is modified to be , with probability∗Y [i � 1] p Y0 0

∗ ∗f(X,YFv,Y ,d,p,t)f (Y Fp)0 Y 0∗ 0a (Y FY [i]) p min 1, ,Y 0 00 [ ]f(X,YFv,Y (i),d,p,t)f (Y [i]Fp)0 Y 00

where this step is sequentially applied to each locus. In the nominating function that we use, the∗q (Y FY [i])Y 0 00

probability of a change of state for the jth locus is , and the probability that the state does not change isd 1 �Y0

.dY0

Modifying the Ancestral Haplotypes.—The ancestral haplotypes, Y[i], are potentially modified in a sequential
manner, as follows. For each , we do the following: modify Yj[i] to be , with∗j p 1,2, … ,n � 1 Y [i � 1] p Yj j

probability

∗f(X,Y ,Y [i]Fv,Y ,d,p,t)j �j 0∗a (Y FY [i]) p min 1, ,Y j j { }f(X,Y[i]Fv,Y ,d,p,t)0

where is a vector of all the multilocus ancestral haplotypes exceptY [i] p {Y [i],Y [i], … ,Y [i],Y ([i], … ,Y [i]}�j 1 2 i�1 i�1 n�1

the jth. This step is sequentially applied to each locus. In the nominating function (Yj*FYj[i]) that we use, theqYj

probability of a change of state for the jth locus is represented by and the probability of no change is representeddYj

by . Given that a change occurs, each possible marker allele is given equal probability.1 � dYj

Diagnosing Convergence in the MCMC Algorithm

A potential pitfall of MCMC methods is that, if a chain is slow to converge, the inferred probability densities
may be incorrect. Many approaches have been developed to diagnose convergence in MCMC algorithms. We
applied a method recently described by Gelman (1996). The basic idea is to simultaneously run b independent
chains each of length m and to start each with either overdispersed or random initial parameter values. One then
examines a statistic contrasting the within-chain and between-chain variances for a particular parameter. We define
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Wij to be the value of this parameter at the jth iteration of the ith chain. At stationarity, these two variances are
equal. An estimator of the between-chain variance is , where andb 2 m¯ ¯ ¯B p [m/(b � 1)]S (w � w ) w p (1/m)S wip1 i. .. i. jp1 ij

. An estimator of the within-chain variance is , whereb b 2 2 m¯ ¯w p (1/b)S w W p (1/b)S s s p [1/(m � 1)]S (w �.. ip1 i. ip1 i i jp1 ij

. To diagnose convergence, Gelman (1996) has suggested use of the following statistic: , where2¯ � �w ) R p [var(w)]/Wi.

. We have implemented this diagnostic in our program, using v as the parametervar(w) p [(m � 1)/m]W � (1/m)B
W that is monitored to diagnose convergence. We have found that, with , a value of was a good�b p 2 R ! 1.001
indication of convergence.
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