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ABSTRACT
A new Bayesian method that uses individual multilocus genotypes to estimate rates of recent immigration

(over the last several generations) among populations is presented. The method also estimates the posterior
probability distributions of individual immigrant ancestries, population allele frequencies, population
inbreeding coefficients, and other parameters of potential interest. The method is implemented in a
computer program that relies on Markov chain Monte Carlo techniques to carry out the estimation of
posterior probabilities. The program can be used with allozyme, microsatellite, RFLP, SNP, and other
kinds of genotype data. We relax several assumptions of early methods for detecting recent immigrants,
using genotype data; most significantly, we allow genotype frequencies to deviate from Hardy-Weinberg
equilibrium proportions within populations. The program is demonstrated by applying it to two recently
published microsatellite data sets for populations of the plant species Centaurea corymbosa and the gray
wolf species Canis lupus. A computer simulation study suggests that the program can provide highly accurate
estimates of migration rates and individual migrant ancestries, given sufficient genetic differentiation
among populations and sufficient numbers of marker loci.

IN recent decades, indirect estimates of gene flow 1999, 2001; Vitalis and Couvet 2001). However, even
coalescent-based methods currently assume that popula-(reviewed in Slatkin and Barton 1989) have been

widely used by biologists, first with allozyme data and tion demography has followed a relatively simple model
of either constant size or deterministic expansion (withmore recently with restriction fragment length polymor-

phisms (RFLPs), DNA sequence data, microsatellite constant migration rates) for roughly the last 4Ne gener-
ations, which is the average time until the sampled chro-markers, and single-nucleotide polymorphisms (SNPs).

Direct estimates of migration rates based on mark-recap- mosomes coalesce to a most recent common ancestor
(Kingman 1982). For populations with large Ne or spe-ture or other methods can be impractical for large popu-
cies in highly disturbed habitats, this assumption maylations that exchange small numbers of migrants be-
be unreasonable.cause the expected number of recaptures is too low;

Recently, nonequilibrium approaches have been pro-indirect estimates of gene flow using genetic markers
posed for identifying migrants (Rannala and Moun-are often the only recourse. Commonly used indirect
tain 1997; Pritchard et al. 2000) or hybrids betweenestimators of gene flow, such as 4Nem � 1/FST � 1, are
species (Anderson and Thompson 2002) and assigningderived on the basis of simplified models of population
individuals of unknown population affinity to potentialstructure that assume constant population sizes, sym-
source populations using multilocus genotypes (Paet-metrical migration (at constant rates), and population
kau et al. 1995; Rannala and Mountain 1997; Cornuetpersistence for periods sufficient to achieve genetic
et al. 1999; Dawson and Belkhir 2001; Gaggiotti et al.equilibrium (Wright 1931, 1969).
2002). These methods extract information about recentThe development of coalescent theory (Kingman 1982;
migration (within the last few generations) from tran-reviewed by Tavare 1984), which traces the ancestral
sient disequilibrium observed at individual multilocusgenealogy of a sample rather than modeling changes
genotypes of migrants or individuals recently descendedof gene frequencies in the population as a whole, has
from migrants. In comparison with indirect estimatorsallowed less restrictive models to be used in developing
of long-term gene flow, these methods make relativelyindirect estimators of gene flow. The new methods ac-
few assumptions, but are informative only about recentcommodate recent population expansions, nonsymmet-
patterns of migration. The two approaches (long-termrical migration, and other complexities that are typical
gene flow and recent migration estimation) are comple-of real biological populations (Beerli and Felsenstein
mentary, providing information about migration on dif-
ferent timescales. Previous methods for inferring recent
migration have focused on identifying individual mi-

1Corresponding author: Department of Medical Genetics, University
grants and their source populations (Paetkau et al.of Alberta, 8-39 Medical Sciences Bldg., Edmonton, AB T6G 2H7,

Canada. E-mail: brannala@ualberta.ca 1995; Rannala and Mountain 1997) or jointly identi-
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fying migrants and populations (Pritchard et al. 2000). ing parameters M, t, p, m, and F are estimated numeri-
cally using Markov chain Monte Carlo (MCMC) methodsExisting methods do not explicitly estimate migration

rates among populations. (Gamerman 1997). The estimated posterior probabili-
ties are used to make inferences about these parametersIn this article, we develop a new Bayesian multilocus

genotyping method for estimating rates of recent migra- (including point estimates). The elements of m are of
primary interest, but other parameters, such as M andtion among populations. The method requires fewer

assumptions than estimators of long-term gene flow and t, may also be of interest (as in Rannala and Mountain
1997) and can be estimated similarly.can be legitimately applied to nonstationary populations

that are far from genetic equilibrium. Moreover, the Likelihood: The likelihood of the data is the probabil-
ity of the observed genotypes given the model parame-newly proposed method relaxes a key assumption of

previous nonequilibrium methods for assigning individ- ters. This is
uals to populations and identifying migrants—namely

Pr(X|S; M, t, F, p) � �
n

h�1
�

J

j�1

Pr(Xhj|Sh; Mh, th, F, p) , (1)that genotypes are in Hardy-Weinberg equilibrium
within populations. We allow arbitrary genotype fre-

wherequency distributions within populations by incorporat-
ing a separate inbreeding coefficient for each popula-
tion. The joint probability distribution of inbreeding







coefficients is estimated from the data. Our method also
allows for missing genotype data by using data augmen-
tation techniques to integrate over possible genotypes
for individuals.

Pr(Xhj|Sh; Mh, th, F, p) �

�(Xhj, g) if Mh � Sh � g and th � 0 ,
0 if Mh � Sh � g and th � 0 ,
�(Xhj, r) if Mh � r, Sh � g, and th � 1,
(1 � 1⁄2th�2)�(Xhj, g) � (1⁄2th�2)�(Xhj, r, g)

if Sh � g, Mh � r, and th � 1 ,

and

�(Xhj, r) � �(1 � Fr)p 2
ijr � Frpijr if Xhj(1) � Xhj(2) � i ,

2(1 � Fr)pijrpkjr if Xhj(1) � i and Xhj(2) � k for i � k ,
THEORY

andData and model parameters: Consider a collection of
I populations of a diploid species, with discrete non-
overlapping generations, and let m � {mlq} be the migra-







tion rates between populations, where mlq is the fraction
of individuals in population q that are migrants from
population l (m can also be treated as time dependent).

�(Xhj, r, g) �

pijrpijg if Xhj(1) � Xhj(2) � i,
pijrpkjg � pkjrpijg if Xhj(1) � i and Xhj(2) � k

or Xhj(2) � i and Xhj(1) � k
for i � k ,

where Xhj(1) denotes the allele present on the maternalAssume that some proportion of an individual’s alleles
chromosome, and Xhj(2) denotes the allele present onoriginate via a single migrant ancestor that arrived at
the paternal chromosome. Note that we define th � 0the current (or a past) generation (this is justified for
if Mh � Sh (i.e., if the individual has no immigrant ances-low migration rates, see appendix a). The individual
try). The likelihood presented in Equation 1 involvesitself may also be a migrant, in which case 100% of its
a product of individual genotype probabilities acrossgenome is of migrant origin. Define M � {Mh}, where
marker loci and individuals because it is assumed thatMh is the source of migrant ancestry for individual h,
individuals are randomly sampled and the markers areand t � {th}, where th is the generation at which a migrant
unlinked.ancestor of individual h arrived (e.g., if th � 0 the individ-

Prior distributions of parameters: To calculate theual has no migrant ancestry, if th � 1 the individual is
probability of observing M and t, given m, we assumeitself a migrant, etc.). M and t are then unobserved
that the populations are large enough that there is negli-variables describing the ancestry of each individual. To
gible genetic drift over two, or three, generations (forallow population genotype frequencies to deviate from
a justification, see appendix a). The expected propor-Hardy-Weinberg equilibrium we define F � {Fl}, where
tion of migrants from population l that arrive in theFl is the inbreeding coefficient for population l and
present generation (the generation at which sampling�1 � Fl � 1. Let p � {pijl} be the population frequencies
is carried out) is then mlq and the expected proportion ofof marker alleles, where pijl is the frequency of allele i
individuals with one migrant ancestor from the previousat locus j in population l.
generation of migration is 2mlq (see appendix a). WeLet X � {Xhj} be the multilocus genotypes observed
use only first- and second-generation migrants to esti-at J marker loci in a random sample of n diploid individ-
mate mlq in this article, but more distant migrant ances-uals, where Xhj is the genotype of individual h at locus
tries could also be used. The probability distribution ofj, and let S � {Sh} identify the population source for
M and t, given m, follows a multinomial distribution,each sampled individual, where Sh is the population

that individual h was sampled from. The number of
Pr(M, t|m) � �

I

l�1

nl!��
2

t�1
�

I

q�l
�[2t�1mlq]nlqt

nlqt!
�� 	 �

I

l�1
�m

n ll 0ll

nll 0!
� , (2)individuals sampled from the lth population is nl. The

data (observations) are X and S. The joint (and mar-
ginal) posterior probability distributions of the remain- where
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mll � 1 � �
2

t�1
�
q�l

2t�1mlq ,

and

nlqt � �
n

h�1

�(Mh, th, Sh),

and

�(Mh, th, Sh) � �1 if Mh � l, Sh � q, and th � t ,

0 otherwise.

We use uninformative (uniform) Dirichlet prior densi-
ties for m and p subject to the constraints

�
klj

i�1

pijl � 1, for all j � 1, 2, . . . , J and l � 1, 2, . . . , I ,

where klj is the total number of alleles at locus j in
Figure 1.—Log-posterior probabilities of the proposedpopulation l and

states for the gray wolf and the C. corymbosa microsatellite data.
Log-posterior probabilities were measured through 600,000�

I

q�1

mql � 1, for all l � 1, 2, . . . , I . iterations of the MCMC program, sampled every 500 itera-
tions.

We assume a uniform prior on the interval (�1, 1) for
the population inbreeding coefficient of population l, Fl.

populations ranged between 0.03 and 0.39 (mean FST �Posterior distributions of parameters: The joint pos-
0.23). An assignment test performed as described interior probability density of the model parameters,
Rannala and Mountain (1997) assigned 91.7% of theapplying Bayes’ theorem, is
individuals to their source population and 7.4% to a

f(m, M, t, F, p, |X, S) neighboring population (Freville et al. 2001).
To estimate the posterior probability distributions of

�
Pr(X|S; M, t, F, p) 	 Pr(M, t|m) fp(p) fm(m)fF(F)

Pr(X|S)
. parameters the MCMC was run for a total of 3 	 106

iterations, discarding the first 106 iterations as burn-(3)
in (intended to allow the chain to reach stationarity).

The denominator of Equation 3 above involves high- Samples were collected every 2000 iterations to infer
dimensional sums and integrals and it is not practical posterior probability distributions of parameters of in-
to evaluate it explicitly for samples of hundreds of indi- terest, including the population allele frequencies, mi-
viduals. Here, we use MCMC methods to estimate the grant proportions, and individual immigrant ancestries.
joint posterior probability density of Equation 3. This Figure 1 shows the log posterior probability plotted
requires only that it be possible for the numerator to against the iteration number for the C. corymbosa data
be evaluated; this can be done using Equations 1 and for the first 600,000 iterations. The increase in log prob-
2 given above. MCMC can be carried out efficiently, ability appears to plateau after only �500 iterations.
even for large samples. Details of the MCMC algorithm To further examine the convergence of the MCMC
are given in appendix b. algorithm, the posterior probability density of each

allele frequency at each locus in each population
(grouped in intervals of 0.05) was compared for two

EXAMPLES
independent runs with random initial parameter values,
using either 2500 or 3 	 106 iterations. The results areApplication to data from the plant Centaurea corym-

bosa: The plant species Centaurea corymbosa is currently shown in Figure 2, A and B. If the two chains have
converged, the relationship between their posteriorfound in only six populations in southern France. In a

study by Freville et al. (2001), 228 individuals (mini- probabilities should be linear. The high degree of scat-
ter in the plot of 2500 iterations illustrates that themum population sample size of 20) from these six popu-

lations were genotyped at six microsatellite loci. This chains have not yet converged (Figure 2A). With 3 	 106

iterations, the relationship is much more linear (Figuredata set provides a useful test for our method, as the
genetic differentiation between most populations is 2B). A similar plot of the posterior densities of the

inbreeding coefficients in two runs of 3 	 106 iterationslarge, likely as a result of limited seed and pollen dis-
persal (Freville et al. 2001). While the geographical also indicates a strong correlation between posterior

probabilities estimated from the two independent runsdistances between the populations vary, all occur within
a 3-km2 area. Observed pairwise FST values between (Figure 3A).
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Figure 2.—Posterior probability densities of
the allele frequencies generated from two sep-
arate runs of the program. The runs differed
in initial random seed and initial values of m
and F. (A and C) The relationship between
these runs over the first 2500 iterations, before
equilibrium has been reached. (B and D) The
relationship between these runs after equilib-
rium has been reached. The latter runs consist
of 3 	 106 iterations, a burn-in of 106, and a
sampling period of 2000. Allele frequencies
are grouped in 0.05 intervals.

The mean posterior probabilities of the immigration low (Figure 4A) or a high migration rate (Figure 4B).
Population sample sizes are nearly identical (38 and 40rates among populations for the C. corymbosa data are

shown in Table 1. Most populations have low migrant individuals, respectively). Both the migration rate and
the sample size affect the variance of the posterior prob-proportions (when averaged over the posterior proba-

bilities) with the exception of population E1, which ability distribution; higher migration rates and smaller
sample sizes both increase the variance. In Figure 4A,appears to have a large expected proportion of migrants

(m � 0.25) from population E2. There appears to be a the estimated 95% credible set of values for the allele
frequency is (0.50, 0.80) while in Figure 4B it is (0.55,source-sink relationship between the two populations

because the expected proportion of migrants into popu- 0.95). Migration can also cause the mode of the poste-
rior density of allele frequency to differ from the maxi-lation E2 from E1 is much smaller (m � 0.00). Figure

4, A and B, presents the posterior densities of the fre- mum-likelihood estimate of allele frequency that would
be obtained by using the population sample directlyquencies of two alleles in a population with either a
and ignoring immigration as is done in many population
assignment tests (e.g., Paetkau et al. 1995).

Another property of the populations that can be stud-
ied is the posterior probability distribution of the total
numbers of nonimmigrants, first-generation immigrants,
and second-generation immigrants. Figure 5, A–C, shows

TABLE 1

Migration rates among C. corymbosa populations

E1 E2 A Pe Po Cr

E1 0.73 0.25 0.00 0.00 0.01 0.00
E2 0.00 0.99 0.00 0.00 0.00 0.00
A 0.00 0.00 0.99 0.00 0.00 0.00
Pe 0.00 0.00 0.00 0.99 0.00 0.00
Po 0.00 0.00 0.00 0.00 0.99 0.00
Cr 0.00 0.00 0.00 0.00 0.00 0.96

Means of the posterior distributions of m, the migration
rate into each population, are shown. The populations into
which individuals are migrating are listed in the rows, while
the origins of the migrants are listed in the columns. Values
along the diagonal are the proportions of individuals derived
from the source populations each generation. Migration ratesFigure 3.—Posterior probability densities of inbreeding co-

efficients generated from two different runs of the program. 
0.10 are in italics. Standard deviations for all distributions
were �0.05.Settings are as in Figure 2.
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Figure 4.—Posterior probability density of
a particular allele over all sampled iterations.
(A) Allele 174 from locus 13D10 in population
Pe. (B) Allele 163 at locus 13B7 in population
E1. (C) The frequency distribution of allele
128, locus cxx140, Fort St. John population.
(D) The distribution of allele 200, locus
cxx204, Great Bear Lake population. The gray
line represents the maximum-likelihood esti-
mate for this allele when calculated from indi-
viduals sampled from this population. Settings
for the MCMC chain are as in Figure 2.

these posterior distributions for C. corymbosa population should be m and the proportion of second-generation
migrants should be 2m. As no higher orders of migrantsE1. The expected proportions of nonimmigrants and

first-generation immigrants overlap, although the vari- are currently considered in our method, the average
proportion of nonmigrants should be �1 � m � 2mance of the posterior distribution of the proportion of

first-generation migrants is lower. The expected propor- under our model, or in this case, 0.25, which falls near
the center of our 95% credible set.tion of second-generation immigrants is about twice as

high and the variance is also larger (this is likely due Our method can also be used to study the migrant
ancestry assignments of individuals, taking account ofin part to the fact that assignments of second-generation

immigrants are less certain than those of first genera- overall population migration rates and uncertain popu-
lation allele frequencies. Figure 6A shows the posteriortion). The 95% credible set for the proportion of first-

generation migrants is (0.10, 0.45) vs. (0.30, 0.75) for probabilities of nonimmigrant, first-, or second-genera-
tion immigrant ancestry for five individuals from popu-second-generation migrants and (0.00, 0.55) for nonmi-

grants. The reason that the probability of the proportion lation E1 and one individual from population E2. In-
dividual 4-E1 is most likely to be a first-generationof nonimmigrants being above 0.55 is negligible, while

the migration rate into this population is �0.25 (Table immigrant, individuals 11-E1 and 37-E1 are most likely
to be second-generation immigrants, and individuals1), is outlined in appendix a. The prior predicts that

the expected proportion of first-generation migrants 22-E1 and 31-E1 are roughly equally likely to be either

Figure 5.—Posterior probability distribution of
the proportion of the individuals in a population
assigned as nonimmigrants (0), first-generation
migrants (1), and second-generation migrants (2)
at each sampling iteration. E1 and the Southern
Richardsons are populations of C. corymbosa and
wolf, respectively.
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Figure 6.—Posterior distribution for the as-
signment of individuals to ancestry states 0 (�),
1 ( ), and 2 (�) for C. corymbosa and wolf. All
individuals are from the populations examined
in Figure 5, except the last C. corymbosa individual,
which is from E2.

nonimmigrants or second-generation immigrants. Our close to one another, with no obvious physical barriers
to gene flow between them (for example, the Tuktoyak-method is able to identify second-generation immi-

grants with a high level of certainty due to the linkage tuk/Inuvik and Paulatuk populations, FST � 0.009),
while others are separated by mountain ranges (Kluanedisequilibrium observed in the multilocus genotypes of

individuals whose parents have originated in different National Park), the Arctic Ocean (Banks Island), or
large geographic distances (Fort St. John). As such,populations. Individual 1-E2 is most likely to be a nonim-

migrant. Excluding population E1, in only 3 of 190 cases these samples allow us to determine the effect of differ-
ences in genetic differentiation on our method’s abilitydid an individual assign with probability �0.05 to a

population other than the one it was sampled from, to obtain reliable estimates of migration rates and indi-
vidual immigrant ancestries.indicating very low levels of migration.

The posterior probability density of the population To estimate the posterior probability distributions of
the parameters the MCMC was run for a total of 3 	inbreeding coefficient, F, was concentrated near 0 for

most populations, although the standard deviation was 106 iterations, discarding the first 106 iterations as burn-
in. Samples were collected every 2000 iterations to inferlarge in population E1, which had the greatest amount

of immigration; in that case, the estimated mean of posterior probability distributions of parameters. Figure
1B shows the log-posterior probability plotted againstthe posterior density was F � 0.027 but the standard

deviation was 0.39. This is likely a result of the lack of iteration number for the gray wolf data. The increase
in log-probability appears to plateau after �10,000 itera-information available to the method for estimating F, as

most individuals in this population have high posterior tions. Figure 2, C and D, shows the correlations (be-
tween two independent MCMC runs) of the posteriorprobabilities of being first- or second-generation mi-

grants. The remaining populations had much lower probability densities of each allele frequency, at each
locus, in each population (grouped in intervals of 0.05).standard deviations (�0.08). The population Pe had

significant posterior probability associated with rela- The high degree of scatter in the plot of 2500 iterations
vs. the plot of 3 	 106 iterations (which is highly linear)tively large positive values of F (mean of posterior density

was F � 0.123 with a standard deviation of 0.05), sug- once again illustrates that the chains have not yet con-
verged at 2500 iterations but have the appearance ofgesting potential local inbreeding effects.

Application to gray wolf data: In a study of population convergence after 3 	 106 iterations. A similar plot (Fig-
ure 3B) of the posterior densities of the inbreedinggenetic structure of gray wolves, Canis lupus, in the Cana-

dian Northwest, Carmichael et al. (2001) genotyped coefficients in two runs, each with 3 	 106 iterations,
also indicates a strong correlation between posteriornine microsatellite loci in 491 individuals (minimum

sample size of 9 individuals) from nine separate regions. probabilities (suggesting the chains have converged).
The means (averaged over posterior probabilities) ofThis data set is a valuable test of our method, as the

amount of differentiation between populations has a the immigration rates between populations for the gray
wolf data are shown in Table 2. Four of the populationsfairly wide range. Some populations are situated fairly
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appear quite isolated (Banks Island, Fort St. John, Klu-
ane National Park, and Northern Richardson Moun-
tains). The remaining five populations all have at least
one major source of immigrants. There were some nota-
bly large mean migration rates between wolf popu-
lations. The mean migration rate from the Northern
Richardson Mountains to the Southern Richardson
Mountains was 0.22; from Tuk/Inuvik to Great Bear
Lake, 0.14; from Tuk/Inuvik to Paulatuk, 0.21; and
from the Southern Richardson Mountains to Tuk/Inu-
vik, 0.23. All of these populations are relatively close to
one another, occurring on the mainland of the north-
ern Yukon or the Northwest Territories. However, it is
worth noting that most of these populations do not have
symmetrical migration rates, suggesting that movement
of animals between these regions is predominantly uni-
directional. For example, while the mean migration rate
from the Northern to the Southern Richardson Moun-
tains populations was 0.22, the mean migration rate in
the opposite direction was only 0.04. The mean migra-
tion rate from Banks Island to Victoria Island was also
fairly large at 0.19 while the reverse rate was near zero
(see Table 2). These islands are quite close to one an-
other and are joined by ice during the winter months.

Figure 4, C and D, presents the posterior densities of
the frequencies of two alleles in populations with either
a low immigration rate and a larger sample size or a
high immigration rate and a smaller sample size. In
these examples, the sample sizes are quite different be-
tween the populations (e.g., 41 individuals for Fort St.
John and 22 individuals for Great Bear Lake). Immigra-
tion causes the mode of the distribution to exceed the
maximum-likelihood estimate by a considerable amount
(Figure 4D) and the variance of the estimated posterior
density of allele frequency is also much larger in the
example with a smaller sample size and higher migra-
tion rate. In Figure 4C the estimated 95% credible set
for the allele frequency is (0.35, 0.60) while in Figure
4D it is (0.10, 0.70).

Figure 5, D–F, shows the posterior probability distri-
butions of the total proportions of nonimmigrants and
first- and second-generation immigrants (from any pop-
ulation) for the Southern Richardson Mountains gray
wolf population. The mode of the posterior proportion
of nonmigrants is much lower than that for the posterior
distribution of the proportion of either first- or second-
generation migrants. Also, the mode of the posterior
distribution of second-generation migrants is roughly
twice that of first-generation migrants. The variance of
the posterior distributions of first- and second-genera-
tion migrant proportions is much greater than that of
the nonmigrant proportion. The 95% credible sets for
the former are (0.20, 0.50) and (0.40, 0.70), respectively,
vs. (0.00, 0.20) for the latter.

Figure 6B shows the posterior probabilities of nonim-
migrant, first-, or second-generation immigrant ancestry
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Mountains population. Individual MP9205 is most likely cies in terms of FST by using the standard result for the
expected FST at stationarity under the Wright model,to be a nonimmigrant. Individual MP9224 is most likely

to be a first-generation immigrant, individual MP9219 FST � 1/(4Nm � 1), and solving for 4Nm in terms of FST

to obtain 4Nm � 1/FST � 1. The right-hand side of thisa second-generation immigrant, and individual MP9220
is fairly evenly split between being a first- and second- equation was substituted for 4Nm in Equation 4. The

simulation results are therefore presented in terms ofgeneration immigrant. The posterior probability density
of the population inbreeding coefficient, F, was concen- FST, m, q, and n. To evaluate the statistical performance

of the estimator of migration rates under the simula-trated near 0 for most populations, with the exception
of two populations, Great Bear Lake and Northern Rich- tions we focused on two statistics, the mean square error

(MSE) and the bias (see Casella and Berger 1990).ardson Mountains, which had significant posterior prob-
ability associated with negative values of F. F was also MSE is a function of both the bias and the variance of

the estimator (MSE � bias2 � variance). A decrease inapproximately uniformly distributed between �1 and
�1 in the Victoria Island population, likely because MSE therefore indicates an improvement in the estima-

tor. To evaluate the statistical accuracy of migrant ances-most of the individuals in this population were assigned
as migrants. try assignments we examined the proportion of migrants

from each ancestral class (e.g., nonmigrants, first-gener-
ation migrants, and second-generation migrants) that

SIMULATION STUDY were assigned to a given class with maximum posterior
probability.Simulation methods: To evaluate the statistical prop-

To examine the performance of the model undererties of the new method we simulated samples from
various conditions, different values were assigned to apopulations exchanging migrants according to the
number of parameters. The most common allele in aWright (1931) island model (at stationarity). The allele
population (q) was assigned a value of either 0.5 or 0.9.frequencies (assuming biallelic loci) in pairs of popula-
The number of individuals sampled from each popula-tions receiving migrants from a common source, with
tion (n) was either 20 or 100. Populations were sepa-allele frequency qi at locus i, were simulated from the
rated by FST values of 0.01, 0.10, or 0.25. Migration ratesstationary probability density function (pdf) under the
between populations (m) were 0.01, 0.05, 0.10, or 0.20.Wright island model. The simulated markers could be
Three different numbers of loci were simulated: 5, 10,SNPs, for example, which are typically biallelic. The pdf
and 20. The parameters listed above were used for simu-of the allele frequency at locus i in population j is
lations in all possible combinations, for a total of 144
parameter combinations. Each of these combinationsf(pij) �

�(4Nm)
�(4Nmqi)�(4Nm[1 � qi])

pij
4Nmqi�1(1 � pij)4Nm(1�qi )�1 .

was replicated 10 times. As each simulated data set con-
tained two populations, data were generated for 20 sim-(4)

The pdf of the allele frequencies at J unlinked loci in ulated populations for each combination of parameter
settings. The MCMC was run with the same settingspopulation i is f(pj) � 
if(pij), where the product is over

the J loci and pj � {pij} is the vector of allele frequencies (number of iterations, etc.) as in each of the examples.
As the results with q � 0.5 were very similar to thosein population j. The alleles at each locus were there-

fore simulated as independent and identically distrib- obtained with q � 0.9, only the former are examined
here.uted with common pdf given by Equation 4. A sample

of n individuals was generated from each simulated pop- Simulation results: The results of the simulation study
are summarized in Figures 7–10. Figure 7 shows theulation according to the multinomial sampling distribu-

tion of Equation 2. It was assumed that (recent) migra- influence of the number of loci and the migration rate
used for the simulations on MSE and bias of the esti-tion occurs between the two populations with rates m12

and m21. To reduce the number of parameters to be mated migration rate for a fixed degree of genetic differ-
entiation (FST � 0.25). In the case of 5 loci (Figureconsidered in our simulations, we assumed that m �

m12 � m 21 and qij � q for all i, j. 7D), the data have little influence on the estimates, by
comparison with the influence of the prior. The priorIf an individual is a nonmigrant, the genotype is gen-

erated by assigning alleles according to the Hardy-Wein- specifies that m is uniform on the interval (0, 0.33) with
mean 0.167. When the actual value of m exceeds theberg proportions, conditional on the simulated allele

frequencies in the population from which the individual mean of the prior (e.g., when m � 0.2), the estimator
has a negative bias. When the actual value of m is lesswas sampled. A first-generation migrant similarly has its

genotype assigned according to Hardy-Weinberg pro- than the mean of the prior (e.g., m � 0.1) the estimator
has a positive bias, as expected if the posterior is essen-portions, but conditional on the allele frequencies in

the alternative population. A second-generation migrant tially similar to the prior. With 20 loci, the data have a
greater influence than the prior and we see a smallerhas its genotype assigned by drawing an allele from each

population, respectively, at each locus. To simplify the positive bias for all values of m considered (Figure 7B).
In general, MSE decreases with an increase in the num-comparisons, we define the population allele frequen-
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Figure 7.—MSE and bias for the migration rate
estimate from simulated data. The following pa-
rameters were used for data simulation: 5 (C and
D) or 20 (A and B) loci, 20 ( ) or 100 (�)
individuals per population, and migration rates
of 0.2, 0.1, 0.05, or 0.01, when FST � 0.25.

ber of loci sampled (Figure 7, A and C) and with increas- gree of genetic differentiation between populations
(FST � 0.25) and 20 loci, the mean of the maximuming sample size, although sample size appears less impor-

tant in this case. posterior probability assignment (across sampled indi-
viduals) increases with decreasing migration rate andIt is apparent from our simulation analyses that the

effects of sampling either more individuals or more loci the variance of the maximum posterior probability
(across individuals) decreases (Figure 9, A and B). In theare correlated. With a small number of loci, increasing

the sample size (from 20 to 100) has little effect on the case of low genetic differentiation between populations
(FST � 0.01) and 5 loci the migration rate has littlebias or MSE of the estimated migration rate (Figure 8,

A and B), but with a larger number of loci (20 loci), influence on the mean or variance of the maximum
posterior probability assignments (Figure 9, C and D).increased sample size dramatically reduces bias and

MSE (Figure 8, C and D). Figure 10 examines the accuracy of the individual
migrant ancestry assignments as a function of migrationThe migration rate and the level of genetic differenti-

ation between populations also influence the mean rate, sample size, and number of loci when populations
with a high degree of genetic divergence (FST � 0.25)(and variance) of the maximum posterior probabilities

(i.e., the highest posterior probability assignment) of are considered. For each of the categories 0 (nonmi-
grant), 1 (first-generation migrant), or 2 (second-gener-individual migrant ancestries. In the case of a high de-

Figure 8.—MSE and bias for the migration rate
estimate from simulated data. The following pa-
rameters were used for data simulation: FST � 0.01
and 5 loci (A and B) or FST � 0.10 and 20 loci (C
and D). Simulations were performed with either
20 ( ) or 100 (�) individuals per population and
migration rates of 0.2, 0.1, 0.05, or 0.01. MSE and
bias for the prior (�) are also given.
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Figure 9.—Mean and variance of the maxi-
mum posterior probability for each individual mi-
grant ancestry from simulated data. The following
parameters were used for data simulation: FST �
0.25 and 20 loci (A and B) or FST � 0.01 and 5
loci (C and D). Simulations were performed with
either 20 ( ) or 100 (�) individuals per popula-
tion and migration rates of 0.2, 0.1, 0.05, or 0.01.

ation migrant), the total population of individuals actu- and migrant ancestry assignments. Migrant ancestries
are most accurate when either a large number of locially belonging to that category is represented by the

height of the histogram bar. Each histogram bar is then and individuals are sampled or migration rates are low.
divided into three different shades, representing the
proportion of individuals actually belonging to that cate-

DISCUSSIONgory that are assigned to each of the three categories. If
the assignments were perfectly accurate, each histogram In this article, a new Bayesian method is presented
bar would be filled with a single shade (corresponding for use with allozyme, microsatellite, RFLP, or SNP
to the migrant ancestry class represented by that histo- multilocus genotype data, which allows one to simulta-
gram bar). neously infer recent migration rates, population allele

Of the four cases shown in Figure 10, the cases with frequencies, population inbreeding coefficients, indi-
either high migration rate (m � 0.2) and large samples vidual migrant ancestries, and other parameters of po-
of individuals (100) and loci (20) or low migration rate tential interest. Our method should be of interest to
and small samples of individuals (20) and loci (5) pro- ecologists assessing the relative importance of specific
vide the most accurate assignments (Figure 10, A and patterns of population dynamics in nature, the preva-
D). Decreasing the number of loci sampled from 20 lence of male- (or female-) biased dispersal, the impor-
to 5 has a large effect in decreasing the accuracy of tance of geographic barriers to dispersal, and so on.
assignments (Figure 10, A and B), but increasing the We have applied our method to two previously pub-
number of individuals sampled has only a modest effect lished microsatellite data sets for plants (C. corymbosa)
on accuracy (Figure 10, B and C). Finally, decreasing and mammals (gray wolves) to illustrate its use. We have
the migration rate also has a large effect, improving the shown that for each of these data sets reasonably precise
accuracy of the method even when only 5 loci and 20 information about recent migration patterns can be
individuals are sampled (Figure 10, C and D). At least extracted. In the case of the C. corymbosa data, a highly
part of the explanation for this trend is the fact that asymmetrical pattern of immigration in one pair of pop-
with lower migration rates population allele frequencies ulations (E1 and E2) supports the existence of a source-
are more accurately estimated (due to the larger propor- sink population structure.
tion of nonmigrants in the sample). Another pattern observed in both example analyses

In conclusion, although it is impossible to generalize is that a greater proportion of individuals in populations
because of the enormous number of possible parameter with ongoing migration have more distant migrant an-
combinations that can occur, our simulations suggest cestry (e.g., second-generation vs. first-generation mi-
that with five or fewer loci and low migration rates very grant ancestry). This is as expected under the low migra-
little information is available for inferring migration tion rate approximation presented in appendix a. If
rates; increasing the number of individuals sampled has migrants beyond the first generation are ignored in
a modest effect in improving estimation except in cer- an assignment test the result may be biased so that
tain cases, such as with low migration and a high degree individuals with second-generation migrant ancestry are
of genetic differentiation among populations. A higher incorrectly assigned as first-generation migrants. It was
level of genetic differentiation among populations re- also observed that estimated population allele frequen-

cies could deviate considerably from maximum-likeli-sults in improved accuracy of estimated migration rates
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Figure 10.—The proportion of individuals with
a migrant ancestry of 0 (�), 1 ( ), and 2 (�)
(size of the vertical bar) who have their maximum
posterior probability in each state (proportion
of the bar shaded). Data were simulated from a
population FST of 0.25. Simulations were per-
formed with a migration rate of 0.2 (A–C) or 0.05
(D), 100 (A and B), or 20 (C and D) individuals,
and 20 (A) or 5 (B–D) loci.

hood estimates (observed proportions of alleles) in pop- the probabilities of IBD of alleles sampled from different
populations (in the case of individuals with mixed mi-ulations experiencing high rates of immigration; it is

therefore important to simultaneously estimate individ- grant ancestry). This could improve performance be-
cause the allele frequencies in populations with lowual migrant ancestries and population allele frequencies

as we have done in this article. Failing to do so may levels of differentiation are not independent and geno-
type sample information can therefore be effectivelyincrease the likelihood that an immigrant individual is

incorrectly assigned as a nonimmigrant due to incorrect “combined” across populations (through the use of
F-statistics) to provide improved estimates of allele fre-estimation of the allele frequencies within populations.

This study therefore suggests that it may be preferable to quencies (in the extreme case, imagine two populations
with no differentiation; a sample from the first popula-estimate migration rates, migrant ancestries, and allele

frequencies simultaneously in population assignment tion can be used to estimate allele frequencies in the
second).tests.

The results of our limited simulation study indicate Another extension of our approach could be to allow
immigration rates to vary over time. Posterior probabili-that very accurate estimates of migration rates and indi-

vidual migrant ancestries can be obtained when levels ties under models with constant or variable immigration
rates could then be compared, using predictive poste-of genetic differentiation among populations are large,

migration rates are low, and 20 or more loci are exam- rior probabilities (see Bernardo and Smith 2000) to
test the hypothesis of constant immigration rates duringined. If 5 or fewer loci are examined little information

may be available, even if a large number of individuals the last few generations. This might potentially allow
one to directly address the relationship between immi-are sampled. To explore the robustness of migration

rate estimates and assignments for particular data sets, gration and gene flow. Strictly speaking, gene flow in-
volves both immigration and local reproduction. If theit may be advisable to carry out preliminary simulations

to determine the expected accuracy of the method, given rates of migration in the current and previous genera-
tions are similar this suggests that there is no differencethe observed level of genetic differentiation among pop-

ulations. In our simulation study, we considered only in breeding success between residents and migrants
(gene flow equals immigration rate), etc.diallelic loci and it is likely that accuracy may increase

with increasing numbers of alleles (e.g., with microsatel- A disadvantage of our method, as currently formu-
lated, is that it allows only the proportions of immigrantslite loci vs. SNPs).

There are a number of ways in which the approach in a population to be estimated; it does not allow one
to estimate directly the total proportion of individualspresented here could be extended in the future. First,

we have ignored preexisting patterns of genetic differen- that emigrate from a population or the proportion that
emigrate from one particular population to another.tiation among populations; our population-specific in-

breeding coefficients consider only identity by descent For example, a small population may have a large pro-
portion of the total individuals in the population migrat-(IBD) of alleles (making up genotypes) within popula-

tions. One could take direct account of population struc- ing to a particular large population but the fraction of
migrants detected in the large population will be lowture by introducing additional F-statistics that describe
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Pr�φ �
1
4� � 4m(1 � m)6 � �82�m2(1 � m)13 � . . .

� 4m � O(m2) ,

where the notation O(m2) denotes terms of order m2 and
higher. The first term in each series is the probability of
a single migrant ancestor: In the case of φ � 1 the
individual is a migrant (at generation 1); in the case of
φ � 1⁄2 the individual has a migrant parent (at generation
2); and in the case of φ � 1⁄4 the individual has a migrant
grandparent (at generation 3). Several possible ances-
tries leading to φ � 1 and φ � 1⁄2 are shown in Figure A1.
The other terms allow possibilities such as two immigrant
parents at generation 2 (in the case of φ � 1), etc.

The first term in each of the three possibilities listed
above (migrant, migrant parent, and migrant grandpar-
ent) is a linear function of m, and the remaining terms
are of order m2 and higher. If m is small the higher-
order terms can be neglected and we need consider
only possibilities involving a single migrant ancestor at
some generation (this approximation is implicit in the

Figure A1.—Several possible patterns of immigrant ances-method of Rannala and Mountain 1997). In the limit
try that would each result in either all of an individual’s genesof small m, we expect a fraction m of individuals in the
arising from an immigrant source (top of figure, φ � 1) or

population to be first-generation migrants, a fraction one-half of an individual’s genes arising from an immigrant
2m to have one migrant parent, a fraction 4m to have source (bottom of figure, φ � 1⁄2). Immigrants are denoted by

solid circles and nonimmigrants by open circles. The probabil-one migrant grandparent, and so on. Individuals with
ity of each pattern, given a migration rate m and assumingmigrant ancestry beyond parents will have only one-
random mating, is given below each part.quarter of their genome derived from migrant ances-

tors, on average, and for smaller numbers of loci such
individuals will be statistically indistinguishable from

�2
p �

1
2
�(p � p0)2 � (p � pm)2� ,nonmigrants; we have therefore chosen to use only the

previous two generations of migrant ancestry to estimate
m, although more distant generations could also be

�
1
2��

p0 � pm

2
� p0�

2

� �p0 � pm

2
� pm�

2

	 ,included with sufficient numbers of loci.
Constant allele frequencies: Assume that a Fisher-

Wright population of constant size Ne receives migrants �
1
4

�p 2
0 .

at rate m. The deterministic change in allele frequency
in the population due to migration in each generation For a given value of FST, the difference �p takes on its
is most extreme values when p � 1⁄2 and the value of FST

is then �p 2
0. In that case, we can rewrite �p as

�p � �m�p0 ,
|�p| � m√FST .

where �p � p1 � p0 is the change in the population
We now have an expression for the magnitude of theallele frequency in a single generation and �p0 � p0 �
change of allele frequency (per generation) under mi-pm is the difference in allele frequency between the
gration pressure in a population that receives migrantspopulation that is the migrant source and the popula-
from another population with a specified level of differ-tion from which individuals are sampled. For a single
entiation between the populations. If m � 0.05 and FST �diallelic locus, the measure of population differentia-
0.05 then �p � 0.01 and the change of allele frequencytion, FST, is defined as
over a few generations will be negligibly small. Similarly,
twice the standard deviation of the allele frequencyFST �

�2
p

p(1 � p) change due to drift will be

(see Wright 1969), where p is the average allele fre-
2�p � 2
p0(1 � p0)

2Ne

� 
2p0(1 � p0)

Ne

.quency across populations and �2
p is the variance of allele

frequencies across populations. We can write �2
p for our

pair of populations as The change in allele frequency under drift will be great-
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If element mll is chosen, the proposed value is mll* �est when p0 � 1⁄2 and in that case 2�p � √1/2Ne . If Ne �
mll[a] � z, where z is chosen on a uniform interval (��m,5000 then 2 �p � 0.01 and the change of allele frequency
��m) with reflecting boundaries, where �m � 1⁄3. If mll* �over a few generations will be negligibly small. These
1 or mll* � 2⁄3 then mlq* is reflected back onto the intervalvalues define boundaries beyond which the approxima-
(2⁄3, 1) by an amount mlq[a] � z � 1 or 2⁄3 � z � mlq[a].tions underlying the proposed method will be well satis-
The remaining elements are adjusted to sum to 1 usingfied. In such cases, the resulting estimates should be
the transformationaccurate. The method may provide reasonable estimates

for larger values of m and FST (or smaller Ne) as well but
mlj* �

mlj(1 � mll*)

�j�qmlj

.the specific range of applicability remains to be shown.
Simulation studies are needed to evaluate the perfor-
mance of the method under a range of conditions. We assumed a uniform Dirichlet prior for m and a

uniform prior (on the integers 0, 1, 2) for ti so that the
terms in the MH ratio involving the priors for m and t

APPENDIX B cancel. The nominating function g(m*|m[a]) described
above is symmetrical so that these terms also cancelMCMC algorithm: The Metropolis-Hastings (MH) al-
from the MH ratio.gorithm (Metropolis et al. 1953; Hastings 1970) was

Modifying individual migrant ancestries: The matrixused to numerically calculate the posterior probability
of individual migrant ancestries at iteration a, denoteddensity of the parameters in our analyses. The basic
by the composite parameters M[a] and t[a], are modi-idea is to construct a Markov chain with a stationary
fied to be M[a � 1] � M* and t[a � 1] � t* withdistribution that is the joint posterior distribution of
probabilitythe parameters to be estimated. This chain is simulated

and samples from the chain are used to make inferences
�M,t(M*, t*|M[a], t[a])

about joint or marginal posterior probabilities of param-
eters. The implementation of the MH algorithm used

� min�1,
Pr(M*, t*|m)Pr (X|S; M*, t*, F, p)g(M[a], t[a]|M*, t*)

Pr(M[a], t[a]|m)Pr (X|S; M[a], t[a], F, p)g(M*, t*|M[a], t[a])� ,
in our program has four steps at each iteration of the
chain. At each step (outlined below) a particular set of
parameters are potentially modified. where

Modifying population migration rates: The matrix of
population migration rates at iteration a, denoted as g(M[a], t[a]|M*, t*)

g(M*, t*|M[a], t[a])
�

nl *q *t * � 1
nlqt

.
m[a], is modified to be m[a � 1] � m* with probability

The nominating function g(M*, t*|M[a], t[a]) is as fol-
�m(m*|m[a]) � min�1,

Pr(M, t|m*)
Pr(M, t|m[a])� . lows: Choose one of the n sampled individuals to have

its migrant ancestry modified with uniform probability
The nominating function g(m*|m[a]) is as follows: 1/n. There are 2I � 1 possible states for the migrant
Choose one of the I 2 elements of the migration matrix ancestry of the chosen individual; it can be a nonmigrant
to be modified with uniform probability 1/I 2. The mi- or a first- or second-generation migrant from one of
gration rates are constrained by our model such that the remaining I � 1 populations. The proposed change

for an individual must be to one of the 2I � 2 states other
mll � 1 � �

q�l
(mlq � 2mlq) � 1 � 3�

q�l
mlq and mll 
 0.

than its present state and each possibility is assigned a
uniform probability 1/(2I � 2).

Modifying population allele frequencies: The matrixIt follows that
of population allele frequencies at iteration a, denoted
as p[a], is modified to be p[a � 1] � p* with probability1 � 3�

q�l
mlq 
 0, �

q�l
mlq �

1
3
, mll � �23, 1� .

�p(p*|p[a]) � min�1,
Pr(X|S; M, t, F, p*)

Pr(X|S; M, t, F, p[a])� .To maintain these constraints, we used the following
proposal scheme. If element l, q is chosen (l � q), the

The nominating function g(p*|p[a]) is as follows:proposed value is mlq* � mlq[a] � z, where z is chosen
Choose one of the I populations with uniform probabil-on a uniform interval (��m, ��m) with reflecting bound-
ity 1/I, choose one of the J loci with uniform probabilityaries, where �m � max{0.10, 1 � mll}. If mlq* � 1⁄3 or
1/J, and choose one of the klj alleles at locus j in popula-mlq* � 0 then mlq* is reflected back onto the interval (0,
tion l with uniform probability 1/klj. If allele i at locus1⁄3) by an amount mlq[a] � z � 1⁄3 or � z � mlq[a]. The
j in population l is chosen the proposed value is pijl* �remaining elements j � q of row l are adjusted so that
pijl[a] � z, where z is chosen on a uniform interval (��p,they sum to 1 by using the transformation
��p) with reflecting boundaries and the remaining al-
lele frequencies are adjusted so that the proposed allelemlj* �

mlj(1 � mll � mlq*)

�j�q,j�lmlj

, for all j � q, j � l .
frequencies sum to 1.
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Modifying population inbreeding coefficients: The types for each individual, the proposed genotypes at
these loci at iteration a, denoted as X�[a], were modi-vector of population inbreeding coefficients at iteration
fied to be X�[a � 1] � X�* with probabilitya, denoted as F[a], is modified to be F[a � 1] � F*

with probability
�X�

(X�|X�[a]) � min�1,
Pr(X�, X�*|S; M, t, F, p)

Pr(X�, X� [a]|S; M, t, F, p)� .

�F(F*|F[a]) � min�1,
Pr(X|S; M, t, F*, p)

Pr(X|S; M, t, F[a], p)� .

The nominating function g(X�*|X�[a]) is as follows:
The nominating function g(F*|F[a]) is as follows: Choose Choose any one of the LT � �Li loci with missing data
one of the I populations with uniform probability 1/I. with uniform probability 1/LT, where Li is the number
The proposed value is Fl* � Fl[a] � z, where z is chosen of loci with missing data for individual i. Modify the
on a uniform interval (��F, ��F) with reflecting bound- locus to become genotype u, v with uniform probabili-
aries such that Fl* remains on the interval (�1, �1). ties 2/[kl(kl � 1)] if u � v and 1/kl

2 if u � v where kl

Modifying genotypes with missing data: If X� is a is the number of alleles (in all sampled populations) at
locus l.submatrix of X � {X�, X�} containing the missing geno-




