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ABSTRACT
The role of somatic mutation in cancer is well established and several genes have been identified that

are frequent targets. This has enabled large-scale screening studies of the spectrum of somatic mutations in
cancers of particular organs. Cancer gene mutation databases compile the results of many studies and can
provide insight into the importance of specific amino acid sequences and functional domains in cancer, as
well as elucidate aspects of the mutation process. Past studies of the spectrum of cancer mutations (in
particular genes) have examined overall frequencies of mutation (at specific nucleotides) and of missense,
nonsense, and silent substitution (at specific codons) both in the sequence as a whole and in a specific
functional domain. Existing methods ignore features of the genetic code that allow some codons to mutate
to missense, or stop, codons more readily than others (i.e., by one nucleotide change, vs. two or three).
A new codon-based method to estimate the relative rate of substitution (fixation of a somatic mutation in a
cancer cell lineage) of nonsense vs. missense mutations in different functional domains and in different tumor
tissues is presented. Models that account for several potential influences on rates of somatic mutation and
substitution in cancer progenitor cells and allow biases of mutation rates for particular dinucleotide sequences
(CGs and dipyrimidines), transition vs. transversion bias, and variable rates of silent substitution across
functional domains (useful in detecting investigator sampling bias) are considered. Likelihood-ratio tests
are used to choose among models, using cancer gene mutation data. The method is applied to analyze
published data on the spectrum of p53 mutations in cancers. A novel finding is that the ratio of the probability
of nonsense to missense substitution is much lower in the DNA-binding and transactivation domains (ratios
near 1) than in structural domains such as the linker, tetramerization (oligomerization), and proline-rich
domains (ratios exceeding 100 in some tissues), implying that the specific amino acid sequence may be
less critical in structural domains (e.g., amino acid changes less often lead to cancer). The transition vs.
transversion bias and effect of CpG dinucleotides on mutation rates in p53 varied greatly across cancers
of different organs, likely reflecting effects of different endogenous and exogenous factors influencing
mutation in specific organs.

IN the last two decades, many genes that display a ten- products are elements of the cellular growth-signaling
network (i.e., growth factors, cytoplasmic protein kinases,dency to undergo somatic mutation in various can-
transcriptional factors, cell cycle regulators, etc.). Incers have been identified. As a result, the connection
normal cells, proto-oncogenes promote cell growth onlybetween somatic gene mutation and cancer initiation,
in the presence of a relevant growth signal. However,and progression, is now much better understood (re-
oncogenic conversion from a proto-oncogene causesviewed in Hanahan and Weinberg 2000; Ponder 2001).
constitutively active cellular growth signaling. Conver-Somatic mutations in such cancer-associated genes are
sion of a proto-oncogene into an oncogene can be medi-known to cause various abnormal cell characteristics,
ated by various kinds of genetic modifications such assuch as an enhanced rate of cell division, vascularization,
point mutations (RAS oncogene), chromosomal trans-and other properties that facilitate cancer development.
locations (ABL oncogene), gene amplifications (MYCThe genes found to undergo genetic alterations in can-
oncogene), etc. An oncogenic mutation is dominant,cer have been placed into two categories: oncogenes
and thus genetic modification of only one copy is suffi-and tumor suppressor genes (Bishop 1991; Ozoren
cient for an allele to gain a new function despite theand El-Deiry 2000). Oncogenes are mutated forms of
presence of its normal counterpart.normal cellular genes, called proto-oncogenes, whose

Genes whose normal role is to prevent damaged cells
from escaping regulation and that undergo inactivation
of both alleles during tumor development are called
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sense mutation, a chromosomal deletion, methylation, the cellular level so that more aggressive cancer cells
(resulting from particular somatic mutations) will domi-etc. The role of the normal tumor suppressor gene in

noncancerous cells has, in several cases, become clearer nate in the cellular population dynamics (see, e.g.,
Vogelstein et al. 1988). Substitution probabilities willfollowing its discovery: p53 arrests the cell cycle at G1

phase, or induces apoptosis, in cells with damaged DNA then be a consequence of both mutational bias in the
nucleotide sequence and selective pressure on the amino(Levine 1997), RB blocks cell cycle progression at the

G1 phase (Weinberg 1995), and BRCA1 is involved in acid sequence.
Studies that have examined the spectrum of codonDNA damage responses and repair pathways (Venkitar-

aman 2002). The discovery of the important role of substitutions in cancer gene databases, such as the p53
database, have generally used the simple approach ofsomatic gene mutation in cancer has stimulated large-

scale screenings for somatic mutations of known human counting the frequencies of missense, nonsense, or si-
lent substitutions observed at a site (e.g., Levine et al.cancer genes in tumor tissues. The best example is the

p53 mutation database (IARC TP53 database at http:// 1995; Bennett et al. 1999; Hussain and Harris 1999).
However, because the codons at different sites in thewww.iarc.fr/P53/ and Thierry Soussi’s p53 website at

http://p53.curie.fr/), which catalogs somatic mutations normal p53 sequence will have different probabilities of
undergoing missense, nonsense, or silent changes, thisin the p53 gene from over 15,000 tumors.

The availability of large databases of tumor mutations approach will be biased if the codon substitution process
is not explicitly modeled. The probability that two muta-has enabled cancer biologists to compare frequencies

of mutations in different functional domains of a gene tions occur in a given cell lineage is very small by
comparison with the probability of a single mutation.and in different tissues. Such studies can potentially clarify

the role of these domains in gene function as it relates Therefore, a codon that can mutate to a stop codon by
a single-nucleotide change will display nonsense substi-to cancer. Moreover, the existence of such databases

has stimulated a search for mutational hotspots that tutions more often than a codon requiring at least two
mutations to generate a stop codon. This implies thatmay be caused by features of the primary sequence (i.e.,

CpG dinucleotides, etc.) that make a region more sus- a codon-based substitution model should be used to
study the spectrum of mutations in tumors; the parame-ceptible to mutation. Comparative studies of homolo-

gous genes across species revealed that highly conserved ters of interest are the probabilities of substitution (i.e.,
fixation of the mutation in a cell lineage giving rise toregions (i.e., regions under strong negative selection)

coincide with mutational hotspots in the mutational a tumor) given that a mutation produces a codon that
causes a missense (amino acid substitution), nonsensedatabase (Soussi et al. 1990; Walker et al. 1999).

Yet another approach for studying cancer mutations (nontranslated or truncated protein), or no (silent)
amino acid change.examines the frequencies of germline mutations in a

population, testing the fit of alternative population ge- Modeling rates of somatic codon substitution in tu-
mor development over an individual’s lifespan is innetic models assuming either neutral evolution or posi-

tive or negative selection. Slatkin and Rannala (1997) many ways similar to modeling rates of germline codon
substitution among species over evolutionary time. Theused this approach to study the spectrum of BRCA1

germline mutations. A common feature of published com- problem, in that context, is to estimate relative rates of
missense vs. silent substitution among sites in a compara-parative studies, and existing studies of mutational spec-

tra in tumor databases, is that they have focused primar- tive analysis of genes from different species (Yang
2001). In this article, we exploit similarities betweenily on overall frequencies of nucleotide changes, rather

than on changes in specific codons and their effect on these two areas of research to develop some simple
codon-based models for studying the spectrum of muta-the amino acid sequence. No published analyses (to our

knowledge) make explicit use of a codon-based substitu- tions in cancers. We make an effort to take account of
the most important factors influencing mutation andtion model.

Features of the mutation process should be reason- cancer development by studying models of varying com-
plexity, allowing for differences in substitution patternsably well described by a nucleotide-based approach; bi-

ases in rates of substitution at particular dinucleotides, among tumor tissue types and among p53 functional
domains. We use the likelihood-ratio test to comparefor example, can be indicative of exogenous vs. endoge-

nous mutagens. One might also expect the mutational different models. As more is learned about the process
of somatic mutation, and of tumorigenesis, these modelsspectrum to differ among tumors from different tissues

because some organs, such as skin or lung, may be exposed can be readily modified using this general framework.
We illustrate the utility of the models by applying themto exogenous (environmental) mutagens (e.g., UV light

and tobacco smoke) more heavily than others such as to the p53 tumor mutation database.
brain (Brash et al. 1991; Rodin and Rodin 2000). A
number of authors have argued that much of the ob-

METHODS
served pattern of nucleotide substitutions in cancer
genes may be due to fixation of mutations in tumor Let Y � {Yl } be the codon sequence of the normal

gene, where Yl is the codon at site l as determined fromlineages under the force of natural selection acting at
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the reference sequence and l ranges from 1 to L, where smallest order statistic of mi iid exponential random
variables with common parameter qi. The pdf of ti isL is the total number of codons in the gene. Let X �

{Xij }, where Xij is the number of sampled tumor gene
fi(ti) � qimie�(qimi)ti . (2)

sequences with a single-nucleotide substitution replac-
ing normal codon i with mutant codon j (for all j � i). The density function is the same for sites bearing any

other codon l � i in the normal sequence provided thatNote that i, j, and Yl are each 1 of 64 possible distinct
codons with the constraint that one nucleotide differ- qi and mi are replaced by ql and ml. The first substitution

occurs at a site with codon i in the normal sequence ifence separates i and j. For example, j � {AAG} and i �
{ATG}. The codon substitution process acting on a can- ti � tj for all j � i. The joint density of ti and ti � tj for

all j � i iscer gene in the somatic cells of an individual that will
ultimately develop a tumor is modeled as a continuous-

f(ti , ti � tj , ∀j � i) � qimie�(qimi)tie��j�iqjmjti . (3)
time Markov process. The instantaneous substitution
rate of this process will depend on many factors such The marginal probability that ti � tj, averaged over all

possible values of ti, isas the rate of mutation to different nucleotides, the
selective advantage to tumorigenesis (in promoting cell
division, etc.) of cells carrying particular mutant forms Pr(ti � tj) � �

ti�∞

ti�0

qimie�(qimiti)e��j�i(qjmjti)dti �
miqi

�jmjqj

. (4)
of the gene, and so on. In this article, we consider
several simple models that incorporate some of these If it is assumed that no more than one codon substitu-
influences. It is shown that the details of the demo- tion has occurred in a gene in the development of a
graphic process of cancer cell proliferation can be ig- particular tumor lineage, then the probability of a
nored if we condition on a single-nucleotide substitu- change from codon i to j is the probability that a substitu-
tion having occurred in a given cancer cell lineage. This tion occurs at a site with codon i in the normal sequence
assumption is satisfied for most of the tumors in the (given by Equation 4 above) multiplied by the probabil-
p53 database that we use to illustrate the method. ity of a transition from i to j, given that a substitution

Constant rates model: To model nucleotide mutation has occurred, which is qij/qi as noted above. Thus, the
we initially use a model with two parameters to describe probability that one substitution occurs from i to j is
the nucleotide mutation process: the average rate of
mutation per site, �, and the ratio of transitions to φij � � miqi

�jmjqj
�qij

qi

�
miqij

�jmjqj

. (5)
transversions, �. To model codon substitution, we use
a model with three parameters, � � {�S, �M, �N}, where Because both qij and qj are linear functions of �, the
these are the probabilities that a newly arisen synony- mutation rate cancels out. The remaining parameters
mous, missense, or nonsense mutation, respectively, ulti- � and � can be estimated from the data using maximum
mately becomes fixed in a tumor lineage. We refer to likelihood. The substitution probabilities always occur
this as model M0, or the constant rate (CR) model be- in ratios in Equation 5, so one of these parameters is not
cause it assumes that the same mutation and substitution identifiable. We instead estimate the three identifiable
rates apply across all functional domains of a gene and parameters �N � �N/�S, �M � �M/�S, and �. The likeli-
across all primary tumor tissue types. hood function is

Let Q � {qij }, where qij is the instantaneous rate of
L(X|Y, �N, �M, �) � C�

i
�
i�j

φXijij . (6)substitution from codon i to codon j, qi � �j�iqij and
qii � �qi. The off-diagonal elements of Q are products of

We used numerical methods to maximize the log-likeli-the instantaneous nucleotide mutation rates and codon
hood function (log L) with respect to these parameters,fixation probability. For example, if i � {TCG} and j �
where log L is{TTG}, then qij � ��/(2 � �) 	 �M. Define mj � �i I(Yi,

j), where I(Yi, j) equals 1 if Yi � j and 0 otherwise (i.e.,
log L(X|Y, �M, �N, �) � �

i
�
i�j

Xij log � miqij

�jmjqj
� . (7)the number of codons in the normal sequence that are

of type j). It is assumed that each codon undergoes an
independent substitution process. A Markov process can The CR model assumes that rates of nucleotide muta-

tion and codon substitution are identical across nucleo-be uniquely characterized as a sojourn process (Taylor
and Karlin 1984). If the process is initially in state i, tides over the entire coding region of the gene.

Variable rates models: The CR model M0 presentedthe waiting time, t, until an event occurs is exponentially
distributed with parameter qi and the probability density above can be readily extended to develop a hierarchy of

variable rates models; here we present several models thatfunction (pdf) is
allow rates of substitution to vary across known functional

f(t) � qie�qit . (1)
domains of a tumor suppressor gene (or oncogene)
and/or across tumors of different tissues. Moreover,If a substitution event occurs, and the initial state is i,

it is a substitution to state j with probability qij/qi. The models that allow mutation rates to be influenced by
the primary nucleotide sequence, for example, to ac-waiting time, ti, until the first substitution at any site

bearing codon i in the normal sequence is then the count for the well-known influence of CpG dinucleo-
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Figure 1.—Relationships among the
models developed for analyzing the
spectrum of somatic cancer mutations.
Each box defines a particular model.
The parameters included in each model
are listed in each box, as well as the total
number of free parameters (df, degrees
of freedom). The parameters are de-
fined as follows: �N and �M are the rela-
tive substitution rates of nonsense vs. si-
lent substitutions and missense vs. silent
substitutions, respectively; � is the ratio
of rates of transition vs. transversion; 
CG

is the relative rate of substitution at CG
dinucleotides; 
PY is the relative rate of
substitution at dipyrimidines; �N and �M

are vectors {�N(i)} and {�M(i)}, respec-
tively, where �N(i) is the relative rate of
nonsense substitutions in the ith func-
tional domain, etc.; �N and �M are matri-
ces {�N(i, j)} and {�M(i, j)}, respectively,
where �N(i, j) is the relative rate of non-
sense substitutions in the ith functional
domain of the jth tumor type, etc.; 
CG

is a vector {
CG(j)}, where 
CG(i) is the
relative rate of substitution at CG dinu-
cleotides in the jth tumor type; 
PY is a
vector {
PY(j)}, where 
PY(j) is the relative
rate of substitution at dipyrimidines in
the jth tumor type; � is a vector {�(i)},
where �(i) is the transition-transversion
bias for the ith functional domain (for
models M2, M5, M6, and M7), and is a
matrix �(i, j), where �(i, j) is the transi-
tion-transversion bias for the ith func-
tional domain in the jth tumor type (for
model M8).

tides on mutation rates, are considered (see Cooper domains but adds an additional parameter 
CG that is
the relative rate of substitution at CG dinucleotides vs.and Youssoufian 1988; Laird and Jaenisch 1996). The

models are summarized in Figure 1. non-CG sites. The dinucleotide model considers the substi-
tution rate of a “quintet,” which includes the nucleotideModel M1 allows the relative rates of missense and

nonsense substitution to vary across functional domains. before the first codon position, the codon itself, and the
nucleotide after the third codon position. If a mutationWe define �N � {�N(i)} and �M � {�M(i)}, where �N(i)

is the ratio of nonsense to silent substitutions in the ith changes a quintet with no CpG into a quintet with CpG
(for example, “T TCT A” changing into “T TCG A”), thefunctional domain, etc. Model M1 retains a common

transition/transversion bias, �, and a common mutation substitution rate is divided by 
CG. If a mutation changes
a quintet with a CpG into a quintet without, the substitu-rate, �, across functional domains. If a gene has n func-

tional domains, there are 2n � 1 parameters under this tion rate is multiplied by 
CG. If the source and target
quintets either both lack or both contain CpG doublets,model because � cannot be estimated from the data if

we condition on a single substitution having occurred the rate is not changed. Model M4 allows �M(i) and
�N(i) to vary across functional domains (as in M1) butin each sampled tumor. Model M2 is similar, but allows

the transition/transversion bias parameter, �(i), to also adds an additional parameter 
CG that is assumed to be
constant across domains. Model M5 extends model M4vary across regions. We define � � {�(i)}, where �(i) is

the transition/transversion ratio for the ith functional by allowing transition/transversion ratios to vary across
functional domains; model M5 is identical to M2 apartdomain. If a gene has n functional domains, there are

3n parameters under this model. from the additional parameter 
CG. Model M6 adds n
additional parameters to model M5, allowing the relativeModel M3 assumes constant rates across functional
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Figure 2.—Diagram
showing the functional do-
mains of the p53 protein.
The four linker regions are
combined and treated as a
single functional domain in
our analysis. The inferred
roles of the domains in p53
protein function are de-
scribed in the text.

rate of silent substitution to vary across functional do- a single-point mutation having occurred (in an exon),
prior to our analysis we removed sequences from themains; we define �S � {�S(i)}, where �S(i) is the silent

substitution rate of functional domain i relative to func- database that contained insertions, deletions, mutations
in introns, or multiple-point mutations. This reducedtional domain 1, for all i � 1. In addition, we add a

parameter 
PY that is the relative substitution rate for the total number of tumor entries used in our analysis
to 12,759. There are six recognized functional domainsnucleotides that occur as dipyrimidines vs. those that

do not (using a quintet codon model of the same form in the p53 gene (see Figure 2) but the boundaries of
the domains described in the literature often differ byas was used to model 
CG). Model M7 extends model M5

by adding the 
PY parameter. Model M8 is the most several amino acids (see, e.g., Levine 1997; Roemer 1999).
We use the boundaries suggested by Roemer (1999) toparameter-rich model we consider. This model extends

M7 by allowing �M, �N, and 
CG to vary across primary define the start and end points for each domain in our
analysis.tumors from different tissues, adding 2(H � 2)(n � 2)

additional parameters, where H is the number of different The transcriptional activation domain (residues 1–40)
interacts with the basal transcriptional machinery (e.g.,primary tumor tissues stratified in the database.
RNA polymerase, other transcription factors, etc.), acti-
vating transcription of its target genes; the proline-rich

ANALYSIS
domain (residues 67–98) is involved in the binding of
p53 to the nuclear matrix and may play a role in stimulat-The p53 tumor suppressor protein was originally iden-

tified in several independent studies in 1979 both as a ing apoptosis in cells with irreversible DNA damage
(Jiang et al. 2001); the DNA-binding domain (residuesprotein that interacts with SV40 virus large T antigen

(Lane and Crawford 1979; Linzer and Levine 1979) 102–292) interacts with DNA and binds to specific pro-
moters that are a target for p53 in its role as a transcrip-and as a highly expressed protein in chemically induced

tumors (Deleo et al. 1979). Initially, it was thought that tion factor (Levine 1997); the oligomerization domain
(residues 326–353), also called the tetramerization do-p53 was an oncogene, but subsequent studies in the late

1980s clearly established that p53 is actually a tumor main (TD), is involved in the assembly of p53 molecules
into their characteristic tetrameric structure and alsosuppressor gene (May and May 1999). Inactivation of

the p53 gene is now known to be the most common plays a role in DNA binding, protein-protein interac-
tions, and post-translational interactions (Chéne 2001);alteration in tumors; slightly �50% of human cancers

contain mutations in this gene (Hollstein et al. 1994). the regulatory domain (residues 360–393) regulates se-
quence-specific DNA binding (Levine 1997); the fourThe p53 protein has various functional roles in normal

cells. As a transcription factor, p53 upregulates expres- “linker” regions join these five domains and were collec-
tively treated as a sixth distinct functional region (linkers)sion of genes involved in cell cycle arrest or apoptosis

in response to DNA damage or other kinds of stress in our analyses (see Figure 2).
Model M8 partitions the parameter estimates accordingsuch as hypoxia, expression of an oncogene, etc. (Lev-

ine 1997). Furthermore, p53 is known to be involved in to primary tumor tissue type as well as functional do-
main. To carry out this analysis, we partitioned the datatranscription-independent apoptosis and DNA damage

repair (Balint and Vousden 2001). according to the source of the primary tumor as docu-
mented in the database. We combined mutations fromFor our analysis, we used release 5 of the p53 database

(http://www.iarc.fr/P53/). This database contained a samples obtained from both surgeries and established
cell lines. Twelve primary cancers are each representedtotal of 15,121 tumor entries as of July 1, 2001. The 11

exons of the p53 gene contain 1179 nucleotides coding by �600 samples in the database and to maintain large
sample sizes we chose to partition by these categoriesfor 393 amino acids. In total, 222 of the 393 codons have

thus far been observed to be targets of mutation in only. These 12 cancers accounted for 9886 of the single-
point mutation entries; the remaining 2873 cancers incancer. Mutations include insertions or deletions of nu-

cleotides (most often resulting in a frameshift), as well the database caused by a single-point mutation were too
rare for separate analyses and were instead analyzedas point mutations. Because our models condition on
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TABLE 1

Results of likelihood-ratio tests (LRTs) comparing the fit of eight nested models
when applied to the p53 cancer mutation database

Models (parameters) d.f. 2 log 


M1 (�N, �M, �) vs. M0 (�N, �M, �) 10 13,619.6
M2 (�N, �M, �) vs. M1 (�N, �M, �) 5 378.3
M3 (�N, �M, �, 
CG) vs. M0 (�N, �M, �) 1 7,633.4
M4 (�N, �M, �, 
CG) vs. M1 (�N, �M, �) 1 6,950.2
M5 (�N, �M, �, 
CG) vs. M2 (�N, �M, �) 1 6,977.0
M6 (�N, �M, �S, �, 
CG, 
PY) vs. M5 (�N, �M, �, 
CG) 6 333.8
M7 (�N, �M, �, 
CG, 
PY) vs. M5 (�N, �M, �, 
CG) 1 93.8
M8 (�N, �M, �, 
CG, 
PY) vs. M5 (�N, �M, �, 
CG) 240 2,061.2

The test statistic 2 log 
 is approximately �2 distributed with the number of degrees of freedom equal to
the difference in the number of free parameters between models. Note that 
 is the ratio of the probability
of the observed data (maximized with respect to the free parameters) under the simple model vs. the more
complex model. Each model was compared only to the submodel that minimized the difference of the number
of free parameters between models. Models are described in the text. All comparisons were significant at the
0.000001 level.

collectively in a composite category labeled as “other least an order of magnitude higher for the DNA-binding
domain vs. the others. Because silent substitutions (bycancers.” The 12 cancer categories are listed in Tables

3 and 4. definition) do not affect the amino acid sequence, the
potential functional significance of such changes is lim-
ited. Possible effects of silent substitutions might be an

RESULTS increase, or reduction, of the rate of translation, for
example, if the relative abundance of tRNAs specific forThe results of likelihood-ratio tests comparing all
each alternative codon varies. Although such a mecha-eight models are shown in Table 1. All of the increas-
nism is a reasonable explanation for codon usage biasingly complex models that we examined resulted in a
within a gene as a whole, it is not a likely explanationsignificant improvement in the fit of the model to the
for the variation we observe in silent rates of substitutionp53 mutation data. The greatest improvements are ob-
among functional domains within the p53 gene.tained by partitioning rates according to functional do-

Another possible effect of codon usage bias is onmains and allowing higher rates of substitution at CG
translational accuracy. Selection for translational accu-dinucleotides (see Figure 2 and Table 1). The most com-
racy might cause codon usage bias, and therefore silentplex models considered (with or without constant rates
substitution rates, to vary across functional domains.across tumor tissues) are preferred over the remaining
There is some evidence for such effects in Drosophila.submodels for parameter estimation because all result
Akashi (1994) showed that for 28 Drosophila proteinsin a significant improvement in the fit of the models to
with DNA-binding domains, codon bias is greater inthe data. We also used the Akaike information criterion
these domains. There is little evidence for codon usage(AIC; Akaike 1973) for model selection. Under this
bias causing silent rate variation in mammals, however.criterion, the model that minimizes the AIC (minus two
A more likely explanation for the observed variation intimes the likelihood of the data with maximum-likelihood
silent substitution rate is investigator sampling bias; someestimates of the parameters plus twice the number of free
functional domains may be sequenced more often thanparameters) is preferred. As the log-likelihood differences
others and therefore silent substitutions in those do-are much larger than the difference in the number of
mains appear more often in the database (Levine et al.parameters (Table 1), use of this criterion also leads one
1995). Because the central DNA-binding domain isto prefer the more complex models. Thus, we present
widely perceived to be the most common target of muta-here only the results for models M6, M7, and M8. These
tion in p53, this domain is sequenced more often thanresults are found in Tables 2–4.
other domains in studies of p53 mutations in cancersTable 2 shows the results for analyses of the p53 data-
(Levine et al. 1995). Many studies have sequenced onlybase using models M6 and M7. The only difference be-
exons 5–8 (Soussi and Beroud 2001). This ascertain-tween these two models is that M7 allows the relative rate
ment bias, if not properly taken into account, can lead toof silent substitution, �S, to vary across domains, whereas
biased estimates of the relative substitution rates amongmodel M6 assumes that it is constant. It is evident from
functional domains. For example, under model M6, thethe results of our analysis using model M7 (see bottom
DNA-binding domain has the highest estimates of �M,half of Table 2) that �S varies considerably across do-

mains. Most strikingly, the silent substitution rate is at �N, and �, while under model M7, which allows the silent
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TABLE 2

Estimates of parameter values under models M6 and M7 using the combined p53
mutation database of 12,759 samples

p53 functional domain

Parameter Linkers Trans Prol-R DNA-B TD Regulatory

Model M6

�M 0.79 0.19 0.58 8.3 0.35 0.11
�N 10.5 0.13 7.2 12.5 6.0 —
� 1.8 0.35 1.6 4.4 1.4 0.62

CG 4.5

PY 1.3
�N/�M 13.2 0.70 11.7 1.5 17.9 —

Model M7

�M 1.1 2.7 2.8 6.5 4.3 1.0
�N 15.0 1.9 33.1 9.9 76.6 —
�S — 0.07 0.21 2.0 0.09 0.06
� 2.2 1.8 3.3 4.4 3.0 —

CG 4.5

PY 1.3
�N/�M 13.3 0.67 12.5 1.5 17.5 —

The model parameters are defined in the text. The six functional domains of the p53 gene are abbreviated
as follows: Linker, linker sequences joining domains; Trans, transcription activation domain; Prol-R, proline-
rich domain); DNA-B, DNA-binding domain; TD, tetramerization domain; and Regulatory, regulatory domain.
These domains are further described in the text. The highest estimated value for each parameter is indicated
in italics and the lowest is underlined. Missing elements in the table indicate that the same parameter value
was assumed to apply across all domains. A dashed element indicates that standard errors were too large (data
insufficient) to allow an estimate of the parameter.

rate to vary among domains, the DNA-binding domain regarding the tumor sampling (and sequencing) pro-
cess are needed to fully address such issues.retains the highest rate of missense substitution but now

has one of the lowest rates of nonsense substitution In contrast with the nonsense and missense rates rela-
tive to the silent rate, the nonsense/missense rate ratio(Table 2). Also under M7, the oligomerization domain

has a rate, �N, which is roughly eight times higher than is effectively independent of the investigator sampling
bias. The variance of the estimated �N/�M ratio for eachthat of the DNA-binding domain. Moreover, under model

M6 the estimated values of �N and/or �M for several domain is influenced by investigator sampling bias (be-
cause this sampling bias reduces the sample size fordomains are �1, implying that silent mutations are

more likely to cause cancer than are missense or non- some domains and not others) but the estimates are
not biased by this effect (compare estimates of �N/�Msense mutations, which is not reasonable. Under model

M7 all relative substitution rates are �1. Another poten- between models M6 and M7 in Table 2). If we consider
the ratio �N/�M, the DNA-binding domain displays atial concern is that genes with multiple substitutions

that violate our model assumptions will be ascertained constant ratio of 1.5 under either model M6 or M7; this
is dramatically lower than that for all other domains,into the sample because partial sequencing has revealed

only one of the substitutions. If explicit information apart from the transactivation domain (ratio of �0.7).
The largest ratio is observed for the oligomerizationabout the screening procedures used in each study were

available, it might be possible to modify the model to domain (ranging from 17.5 to 17.9, depending on which
model is used).correct for this potential source of bias.

A final concern is that “investigator sampling bias” The striking differences that we observe in the rates
of nonsense vs. missense substitutions among domainsmay be enhanced by p53 germline polymorphisms in

the general population. In our analysis, we treated the have a direct biological interpretation: the structural
regions (linkers and proline-rich and oligomerization“reference” germline p53 sequence as fixed. In reality,

p53 nucleotide polymorphisms exist in the human pop- domains) may be largely unaffected by missense muta-
tions because the precise residues found in such regionsulation that could influence whether a tumor is included

in our analysis (e.g., has a single-nucleotide substitution) or are often unimportant for p53 function; the specific
residues of the DNA-binding and transactivation domains,excluded (e.g., has two, or more, nucleotide substitutions).

More detailed models (and more detailed information) on the other hand, may have a more important effect
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TABLE 3

Estimates of parameter values obtained by applying model M8 to the p53 cancer mutation database and
partitioning by 12 primary cancers (accounting for 9886 samples), each represented by at least 600
samples in the database, and a composite of the remaining cancers (accounting for 2873 samples)

Parameter estimates

�N/�M: p53 functional domain

Primary tumor Linkers Prol-R DNA-B TD 
CG 
PY

Bladder 5.9 4.6 2.0 13.3 3.1 0.98
Brain 12.5 3.8 0.43 20.4 6.3 1.4
Breast 10.4 26.3 1.9 22.3 3.9 0.86
Colon 11.1 — 1.3 — 9.5 0.94
Esophagus 34.2 — 2.0 19.4 4.9 0.85
Hematopoietic 4.5 26.2 1.1 13.4 4.2 0.98
Liver 15.0 — 0.95 14.5 2.6 0.32
Lung 17.4 81.8 1.6 9.1 3.5 0.61
Ovary — 6.8 1.2 — 4.1 0.79
Rectum 109.3 — 1.4 — 10.8 0.86
Skin 13.64 4.0 2.7 68.7 2.8 0.91
Stomach 1.9 22.0 1.7 12.9 6.4 0.93
Other cancers 15.9 13.3 1.6 19.3 3.7 0.93

The first four columns show estimates of the ratio of nonsense to missense substitutions �N/�M for four
functional domains labeled as follows: Linkers, linker sequences joining domains; Prol-R, proline-rich domain;
DNA-B, DNA-binding domain; and TD, tetramerization domain. These domains are further described in the
text. The highest estimated value for each parameter is indicated in italics and the lowest is underlined. The
last two columns show estimates of the relative mutation rate for CpG dinucleotides, 
CG, and dipyrimidines,

PY, for each cancer type. A dashed element in the table indicates that standard errors were too large (data
insufficient) to allow an estimate of the parameter.

on function, and missense or nonsense substitutions in Results are shown in Table 3 for only four of the six
domains because too few observations were availablethese domains thus contribute nearly equally to tumor

development. to reliably estimate �N/�M for the transactivation and
regulatory domains using the partitioned datasets. TheThe low estimated rates of missense substitutions for

the transactivation and oligomerization domains are least variation of �N/�M across tumor tissues is observed
for the DNA-binding domain, with the ratio varyinglikely due to the nonspecific nature of those domains.

Studies suggest that a single-point mutation in those from a low of 0.43 (in brain cancers) to a high of 2.7
(in skin cancers). The most variation of �N/�M acrossdomains is generally not able to completely abolish the

protein function (Lin et al. 1994; Pietenpol et al. 1994; tumor tissues is observed for the linkers with the ratio
varying from a low of 1.9 (in stomach cancers) to a highJeffrey et al. 1995; Waterman et al. 1995).

Estimates of 
CG suggest that the rate of mutation at of 109.3 (in rectal cancers). There are also some clear
trends across tumor types: bladder and brain cancersCG dinucleotides is more than fourfold the rate at non-

CG sites. Estimates of parameter 
PY, on the other hand, appear to have the lowest average �N/�M ratio (averaged
across domains) and lung, rectum, and skin cancersare close to one, indicating only a slight increase of the

mutation rates at dipyrimidine sites. The estimated transi- have the highest. These differences in substitution rates
are very pronounced and it is likely that they are indica-tion/transversion ratio, �, varies from 1.8 to 4.4 under

model M7, which is within the range of values observed tors of fundamental underlying differences in the bio-
logical role of p53 in cancer initiation and progressionin evolutionary studies. The values of � are biased down-

ward when variation in silent substitition rates is not in these different tissues.
We also studied the mutation process in different tumoraccounted for (i.e., compare estimates of � under mod-

els M6 and M7 in Table 2). types by examining estimates of 
CG, 
PY, and � (Table 3).
Parameter 
CG varies widely among tumor types with brain,The results of our analyses using model M8, which

allows parameters to vary across primary tumor types, colon, stomach, and rectum having the highest values
(ranging from 6.3 to 10.8) and bladder, liver, lung, andas well as functional domains, are shown in Tables 3

and 4. First, we consider the substitution process; there skin having the lowest values (ranging from 2.6 to 3.5).
This is likely a reflection of the influence of exogenousis considerable variation in �N/�M among tumors, but

some domains show much greater variation than others. vs. endogenous mutagenic influences in the different
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TABLE 4

Estimates of the ratio of transitions to transversions for each functional domain obtained by applying model
M8 to the p53 cancer mutation database and partitioning by 12 primary cancers (accounting for 9886

samples), each represented by at least 600 samples in the database, and a composite of the
remaining cancers (accounting for 2873 samples)

Transition/transversion ratio (�): p53 functional domain
Parameter

Primary tumor estimates: Linkers Trans Prol-R DNA-B TD Regulatory

Bladder 2.2 0.63 2.2 5.2 0.44 0.73
Brain 4.4 1.2 7.2 7.6 1.9 3.0
Breast 3.3 0.29 2.0 5.9 1.9 0.98
Colon 7.3 3.1 — 9.0 6.0 9.5
Esophagus 1.5 0.84 — 4.0 1.9 —
Hematopoietic 1.5 0.96 1.5 4.7 0.97 —
Liver 1.1 — — 1.6 1.7 —
Lung 0.54 0.19 0.62 2.1 0.67 —
Ovary 11.2 0.86 1.9 5.1 4.6 2.7
Rectum 3.4 — — 8.2 2.3 —
Skin 3.4 — 4.0 6.2 5.3 —
Stomach 2.0 — 1.1 6.7 0.70 —
Other cancers 1.3 0.10 1.2 4.4 1.3 —

The highest estimated value for each parameter is indicated in italics and the lowest is underlined. A dashed
element in the table indicates that standard errors were too large (data insufficient) to allow an estimate of
the parameter.

DISCUSSIONorgans. Mutations in p53 from bladder, liver, lung, and
skin may be more heavily influenced by exogenous fac- Large-scale databases that compile the frequencies of
tors, while mutations from brain, colon, stomach, and somatic mutations at particular nucleotides of cancer
rectum may be most heavily influenced by endogenous genes from tumors are an important new resource for
factors such as primary sequence. The dipyrimidine mu- studying the role of somatic mutation in cancer develop-
tation rate parameter, 
PY, is much less variable among ment and progression. In this article, we have developed
primary tumor types and is quite close to 1 in most cases a general parametric framework aimed at modeling the
(ranging from a low of 0.32 in liver to a high of 1.4 in spectrum of mutations in cancer genes and facilitating
brain). This suggests that there is little difference in estimation of biologically relevant parameters. It is
mutation rates as a consequence of a dipyrimidine in shown (by examining the p53 mutation database) that an
the primary sequence. Because at least one mechanism

important parameter to consider is the relative rate of
of dipyrimidine mutation (conversion of CC to TT by

substitution of nonsense vs. missense mutations (i.e., theUV; Brash et al. 1991) results in two nucleotide substitu-
ratio of nonsense to missense substitution rates), �N/�M,tions, this effect would not be detectable in our analysis,
in different functional domains and primary cancer types.which focuses on single-nucleotide substitutions.
A ratio close to 1 was observed for the DNA-binding do-Table 4 shows the variation of the transition/transver-
main, indicating that missense and nonsense mutationssion rate ratio, �, across tumor types and across func-
were about equally likely to produce cancer in this do-tional domains. The average value of � is highest for the
main. The remaining domains, which are primarily in-DNA-binding domain and lowest for the transactivation
volved in protein structure, displayed ratios �1 (100-domain. These results may be biased, however, because
fold greater in some tumor types), indicating that thesewe have not corrected for investigator sampling bias (vari-
domains can tolerate a much higher level of missenseation of �S across domains) in this analysis. More reliable
mutation without producing cancer. A codon-basedis the variation of the average � values across primary
model, such as we have developed, is needed to extracttumor types. The highest average value of � is observed
this information because it depends critically on thefor tumors of the brain, colon, and ovary. The lowest
probabilities that particular codons produce missenseis observed for tumors of the bladder, liver, and lung.
or nonsense changes. The overall frequency of missenseOnce again, this is likely to reflect differences in exoge-
mutations is much higher in all domains (Levine et al.nous vs. endogenous mutational influences: the most
1995), swamping the effect of selection on the substitu-pervasive endogenous factor influencing rates of muta-
tion process if codon usage is not explicitly taken intotion is the presence of CpG sites; this increases the rates
account.of transitions vs. transversions whereas many exogenous

mutagens have the opposite effect. Another finding in our analysis of the p53 mutation
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database is that estimates of 
CG, the parameter that count for additional complexities; given that all the
models we considered provided a highly significant im-describes the effect of CG dinucleotides on mutation

rates, vary greatly among primary cancer types; this likely provement in the fit of the model to the p53 mutation
database it is very likely that yet more complex modelsreflects the differing importance of endogenous and

exogenous factors on the mutational spectrum in these can be proposed that will further improve the fit to the
data. Our models should be viewed as only an initialorgans. Similarly, the ratio of the transition rate to the

transversion rate, �, varies dramatically across domains step toward the development of a realistic parametric
framework for modeling the spectrum of mutations inand across primary tumor types; this is also likely to

reflect an underlying heterogeneity of the mutation pro- cancer genes.
The program oncSpectrum, written in the C lan-cess in different organs, at least partially due to differing

environmental influences. Both the effects of environ- guage, implements maximum-likelihood estimation of
parameters for all the models described in this article.ment (on the spectrum of mutations) and the influence

of selection acting on cells carrying particular mutations It is intended for use with data from a cancer mutation
database such as the p53 database. The program can(on the spectrum of substitutions) can be detected using

our models. Selection acting during the substitution be downloaded from http://rannala.org.
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