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Abstract— What does the posterior probability of a phylogenetic tree mean? This simulation study shows that Bayesian
posterior probabilities have the meaning that is typically ascribed to them; the posterior probability of a tree is the probability
that the tree is correct, assuming that the model is correct. At the same time, the Bayesian method can be sensitive to model
misspecification, and the sensitivity of the Bayesian method appears to be greater than the sensitivity of the nonparametric
bootstrap method (using maximum likelihood to estimate trees). Although the estimates of phylogeny obtained by use of
the method of maximum likelihood or the Bayesian method are likely to be similar, the assessment of the uncertainty of
inferred trees via either bootstrapping (for maximum likelihood estimates) or posterior probabilities (for Bayesian estimates)
is not likely to be the same. We suggest that the Bayesian method be implemented with the most complex models of those
currently available, as this should reduce the chance that the method will concentrate too much probability on too few trees.
[Bayesian estimation; Markov chain Monte Carlo; posterior probability; prior probability.]

Quantifying the uncertainty of a phylogenetic estimate
is at least as important a goal as obtaining the phyloge-
netic estimate itself. Measures of phylogenetic reliability
not only point out what parts of a tree can be trusted
when interpreting the evolution of a group, but can guide
future efforts in data collection that can help resolve re-
maining uncertainties. The reliability of a tree can be as-
sessed using frequentist and Bayesian approaches. In the
frequentist approach, the reliability of a phylogenetic tree
could be described by a confidence set of trees, in which
the confidence level or coverage probability would be
100(1 — )% (here « isanumber between 0 and 1 that con-
trols the size of the confidence set of trees). The interpre-
tation of a 95% (a = 0.05) confidence set of trees (simply
a list of trees) requires a thought experiment: if we could
take random samples of the same size as the original data
matrix and create confidence sets of trees in the same way
for each sample, then 95% of those confidence sets would
contain the true tree. An alternative interpretation is that
if an investigator calculated a 100(1 — «)% confidence
set of trees every time he or she performed a phyloge-
netic analysis, then at most a proportion « of them would
not contain the true tree over the investigator’s lifetime.
In practice, phylogeneticists do not calculate confidence
sets of trees, but assign measures of phylogenetic relia-
bility to individual branches of a phylogenetic tree. The
general idea, however, is the same; if the investigator’s
confidence in a particular group is 95%, then ideally the
grouping of taxa would be incorrect 5% of the time (onre-
peated sampling). Assessing the uncertainty in individ-
ual clades on a tree has the benefit that it allows the sys-
tematist to evaluate specific hypotheses of monophyly.

The task of developing good frequentist measures
of phylogenetic reliability, however, has proven par-
ticularly difficult, and has resulted in many different
approaches being taken. One group of methods calcu-
lates a test statistic for a branch on the phylogeny, such
as the Bremer decay index (Bremer, 1988, 1994), and

then uses permutation procedures to generate a null
distribution for the test statistic. The T-PTP test (Faith,
1991), for example, follows this strategy and aims at
testing the hypothesis of monophyly for a group. The
problem with this approach, however, is that the null
distribution for the test statistic has nothing to do with
the null hypothesis of monophyly (Swofford et al., 1996;
DeBry, 2001); if a group truly were monophyletic, then
one would not expect the observations supporting that
monophyly to be random. An alternative method for
assessing the reliability of a phylogenetic group involves
testing the null hypothesis that the branch supporting
the monophyly of the group is zero in length. Although
this type of test is clearly related to the support of a
group (a long branch subtending a group on a tree
means that many characters evolved on that branch), it
does not directly assess the reliability of a group.

The most widely used, and generally accepted,
method for assessing phylogenetic reliability is the non-
parametric bootstrap method (Efron, 1979; Efron and
Tibshirani, 1993) introduced to the phylogenetics litera-
ture by Felsenstein (1985). The nonparametric bootstrap
method constructs new bootstrapped data matrices of
the same size as the original data matrix by randomly
sampling characters (e.g., columns in an alignment of
DNA sequences) with replacement. The same method
of estimating phylogeny that was applied in the analysis
of the original data matrix is then applied to each of the
bootstrapped data matrices. The fraction of the time a
particular clade appears in analysis of the bootstrapped
data sets represents the confidence value for that group-
ing of taxa; if a group appeared in 88% of the analyses
of the bootstrapped data matrices, then its confidence
level is approximately 88%. The jackknife method is
similar in spirit to the bootstrap method (Mueller and
Ayala, 1982; Farris et al., 1996). Instead of resampling
the original data matrix with replacement, however,
a fixed number of characters (columns) are randomly
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deleted from the original analysis in construction of the
jackknifed data matrices. Each of these jackknifed data
matrices is then analyzed using the same phylogenetic
method as was applied to the original data. Although
the end goal of the jackknife method is the same as the
bootstrap method, it is not clear what fraction of the sites
should be dropped in any particular analysis so that
the jackknife fraction for a group matches the desired
confidence level (Farris et al., 1996; Felsenstein, 2003).

There are three problems with using the nonparamet-
ric bootstrap method to assess phylogenetic reliability.
None of these problems is necessarily fatal, but taken
together they greatly complicate the application of the
bootstrap method in phylogenetics and the interpreta-
tion of bootstrap proportions on trees. The first problem
concerns the computational complexity of the method,
especially when applied with the method of maximum
likelihood to estimate phylogeny. Simply put, bootstrap
analyses can be computationally prohibitive when the
models of sequence analysis are complicated or the data
sets are large. This problem can be alleviated by clever
programming and fast computers, but bootstrap anal-
yses will always take many times longer than analysis
of the original data. Another problem is that it is diffi-
cult to apply the bootstrap method under some sorts of
models. For example, the standard bootstrap method in
which individual sites are sampled is inappropriate for
models that incorporate correlation in rates (Yang, 1995;
Felsenstein and Churchill, 1996) because the sampling
procedure destroys the autocorrelation structure of rates
in the bootstrap matrices. Potentially, this problem can
be dealt with by sampling blocks of characters (Kiinsch,
1989), but this solution remains unexplored. Finally, the
interpretation of the bootstrap proportion as applied in
phylogenetics is problematic.

In most statistical applications, the bootstrap proce-
dure is used to approximate the sampling distribution
of a statistic. We imagine that we have some observa-
tions from which we estimate the value of some param-
eter that has a true value of 7. The estimated value of
the parameter is denoted 9. The observations are treated
as random variables (variables that take their values by
chance), so that the parameter, which is a function of
the observations, is also a random variable.The proba-
bility distribution of the parameter estimate is called the
sampling distribution, and several very useful quanti-
ties can be calculated from it. Importantly, the sampling
distribution can be used to assess the variability in an
estimate. For example, one can construct a confidence
interval, which is a range of parameter values that con-
tains the true value of the parameter with some prespec-
ified coverage probability (usually 95%). The bootstrap
provides a computer intensive, but straightforward way
to approximate the sampling distribution of a parame-
ter even when the modeling assumptions are quite com-
plex. Unfortunately, the application of the bootstrap in
phylogenetics is not as simple as it is for most statistical
problems. One of the main problems is that there is not a
natural way to measure the variability of trees (Holmes,
2003). Another problem is that the parameter estimates

change discontinously; small changes in the data can re-
sult in different tree topologies being chosen as best. The
bootstrap proportions have been variously interpreted
as the probability that a clade is correct (a notion ex-
plored by Hillis and Bull, 1993), the robustness of the re-
sults of a phylogenetic analysis to perturbation (Holmes,
2003), and the probability of incorrectly rejecting a hy-
pothesis of monophyly (Felsenstein and Kishino, 1993).
Hillis and Bull (1993) performed a simulation study that
investigated the coverage probability of the bootstrap
proportion. In their simulation analyses, the bootstrap
proportion for a clade usually underestimated the true
probability that the clade is correct. The general results
of the Hillis and Bull study have been replicated in other
studies (e.g., Alfaro et al., 2002; Zharkikh and Li, 1992a,
1992b). The bootstrap proportions can be interpreted in
a hypothesis testing framework. In this case, the hypoth-
esis to be tested is one of monophyly for a group. One
minus the bootstrap proportion for a clade can be inter-
preted as the probability of incorrectly rejecting the hy-
pothesis of monophyly. The iterated bootstrap (Rodrigo,
1993), full-and-partial bootstrap (Zharkikh and Li, 1995),
and corrected bootstrap of Efron et al. (1996) all attempt
to improve the accuracy of the bootstrap as an estimate
of one minus the probability of incorrectly rejecting a hy-
pothesis of monophyly (Sanderson and Wojciechowski,
2000). These correction procedures, however, add con-
siderable complexity to the bootstrap procedure. To date,
only Sanderson and Wojciechowski (2000) have applied
the corrected bootstrap, and only to a single clade. Al-
though the best interpretation of the bootstrap propor-
tion on a phylogenetic tree appears to be in a hypothe-
sis testing framework, where the bootstrap proportion is
related to the type I error, most practicing systematists
appear to interpret bootstrap support as the probability
that the clade is correct. Although this interpretation and
the hypothesis testing one are clearly related (a high boot-
strap proportion should be associated with correct clades
more often than low bootstrap proportions), the ques-
tions are different. To our knowledge, only the Bayesian
approach directly addresses the probability that a clade
is correct, conditional on the observations.

The methods discussed above all use the frequen-
tist interpretation of probability. The complication in
frequentist statistics is that the parameter (e.g., phylo-
genetic tree) is considered to take a fixed but unknown
value; the parameter is not treated as a random variable,
and hence cannot be directly assigned a probability. To
obtain an idea of the variability of an estimated phy-
logeny, then, one must resort to the thought experiment
of sampling data sets and reconstructing phylogeny on
each. The distribution of phylogenetic trees obtained in
this manner is an approximation of the sampling distri-
bution of phylogeny. In a Bayesian analysis, on the other
hand, the parameters are treated as random variables
and can be directly assigned probabilities. Bayesian in-
ference of phylogeny suggests a natural way to assess the
uncertainty in a phylogeny: the probability that a tree is
correct is simply the posterior probability of the tree. The
posterior probability of a tree is conditioned on the data
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and the model used in the analysis both being correct.
The use of posterior probabilities has some intuitive ap-
peal. For one, the interpretation of posterior probabili-
ties is direct and simple; one does not need to invoke a
thought experiment of repeated sampling to interpret the
results of a Bayesian analysis. More practically, posterior
probabilities can be approximated using Markov chain
Monte Carlo even under complex models of substitution
in a fraction of the time that would be required for max-
imum likelihood bootstrapping (the closest analog to a
Bayesian analysis of phylogeny; Larget and Simon, 1999).

The proper interpretation of posterior probabilities on
trees has recently attracted a lot of attention from biolo-
gists. Many systematists have noted that posterior prob-
abilities on clades tend to be higher than the bootstrap
proportions on the same clades (Douady et al., 2003;
Erixon et al., 2003; but see Cummings et al., 2003), and
Murphy et al. (2001) speculated that posterior probabil-
ities do not suffer from being too conservative like the
nonparametric bootstrap (Hillis and Bull, 1993). The re-
sults of simulation studies comparing posterior proba-
bilities and bootstrap proportions have been mixed. One
important problem that can be addressed in simulation
is the robustness of posterior probabilities to violation
of model assumptions. This can be done by simulating
data under a complicated model of evolution, and then
using an incorrect (oversimplified) model of evolution in
the Bayesian analysis. Suzuki et al. (2002) took this ap-
proach and argued that posterior probabilities are more
sensitive to model misspecification than the bootstrap
method. Their method for violating the assumptions of
the method, however, was extreme; they simulated data
sets on the three possible trees for four species, and then
concatenated the data matrices. This means that each
third of the concatenated data set had a different under-
lying phylogenetic tree. The Bayesian analysis, however,
assumed a common tree for the data matrix. Although
there are many cases in which evolutionary biologists
think that different phylogenies may underlie different
parts of the genome (e.g., for coalescence trees), this type
of model violation is extreme and does not mimic the
more universal concern that the substitution model as-
sumed in the analysis is incorrect. Indeed, analysis of
model adequacy suggests that models currently used in
phylogenetic analysis fail to capture important evolu-
tionary processes (Goldman, 1993). It is also important
to analyze the behavior of Bayesian posterior probabili-
ties (and other methods for assessing phylogenetic reli-
ability) when all of the assumptions of the analysis are
satisfied. This gives a “best case” picture of the statis-
tical behavior of a method. It is already known that it
is difficult to interpret the uncorrected bootstrap sup-
port for a clade as the probability that the clade is cor-
rect (Hillis and Bull, 1993; Holmes, 2003), even when all
of the assumptions of the method are satisfied. A few
studies have examined the statistical properties of poste-
rior probabilities when the assumptions of the Bayesian
analysis are satisfied. Lemmon and Moriarty (2004) ex-
amined the behavior of posterior probabilities in simula-
tion. They examined cases in which the Bayesian model

was over- and underspecified. In general, underspecifi-
cation of the phylogenetic modelled to biased estimates
of parameters. Alfaro et al. (2003) and Wilcox et al. (2002)
compared posterior probabilities and bootstrap propor-
tions in simulation and found that posterior probabilities
gave amore accurate representation of phylogenetic con-
fidence than the bootstrap method (when the assump-
tions of the method were satisfied). In general, a posterior
probability of, say, 0.91 was more likely to correspond to
a probability that the tree was correct of 0.91 than the
bootstrap method. Importantly, the posterior probabili-
ties did not perfectly match the probability that a clade
is correct in these simulations. For example, Wilcox et al.
(2002: 369) point out that “...Bayesian support values
provide much closer estimates of phylogenetic accuracy
(even though they are still somewhat conservative) than
the estimates provided by corresponding bootstrap pro-
portions.” A similar result is seen in Figure 4 of Alfaro
etal. (2003). This result is worrisome, because it suggests
that posterior probabilities may not have the meaning
that is ascribed to them (i.e., that the posterior probabil-
ity of a clade is the probability that the clade is correct).

In this study, we examine the statistical properties
of Bayesian posterior probabilities on small (six taxon)
trees. We examine the behavior of the method when all
of the assumptions are satisfied, and also when the as-
sumptions of the method are violated. We show that pos-
terior probabilities do have a well-defined and easily in-
terpreted meaning when the assumptions of the method
are satisfied. We also show that posterior probabilities
can be sensitive to model misspecification, suggesting
that care should be taken to use models of sequence evo-
lution that are as realistic as possible in Bayesian analysis.

METHODS

We evaluate the statistical properties of posterior
probabilities using computer simulation. In a tradi-
tional computer simulation, one fixes parameters of
the phylogenetic model or varies them systematically
over a parameter space (e.g., Huelsenbeck and Hillis,
1993; Huelsenbeck, 1995). For example, one might
decide to evaluate the behavior of some phylogenetic
method on many data matrices that were simulated on a
common tree and set of branch lengths. This traditional
simulation procedure is how earlier studies examined
the properties of Bayesian posterior probabilities (Alfaro
et al.,, 2003; Suzuki et al., 2002; Wilcox et al., 2002).
However, if the goal is to study posterior probabilities
when all of the assumptions of the Bayesian analysis
are satisfied, then the traditional approach cannot be
used. The model in a Bayesian analysis of phylogeny
has two parts: One part involves assumptions about
how the substitutions occur on the tree; the other part of
the model describes the prior probability distribution
of the parameters. The traditional simulation approach
does not treat the prior of the Bayesian analysis seriously.
In effect, a traditional simulation treats the parameters
as fixed, whereas a Bayesian analysis treats the pa-
rameters as random variables. We use a modification
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Traditional Simulation:

Step 1. Pick a phylogenetic model, specifying a fixed tree,
set of branch lengths, and substitution model
parameters.

Step 2. Simulate a data matrix under the model specified
in step 1.

Step 3. Perform a Bayesian analysis of the data simulated
in step 2, approximating posterior probabilities using MCMC.

Bayesian Simulation:

Step 1. Pick a phylogenetic model by randomly drawing a
tree,set of branch lengths, and substitution model
parameters from the prior probability distribution.

Step 2. Simulate a data matrix under the model specified
instep 1.

Step 3. Perform a Bayesian analysis of the data simulated
in step 2, approximating posterior probabilities using MCMC.

FIGURE 1. The traditional simulation procedure fixes parameters
of the evolutionary model (such as the tree, branch lengths, and sub-
stitution model parameters), simulating many data matrices on the
fixed tree. The procedure used in this study first draws the tree, branch
lengths, and substitution model parameters from the prior probability
distribution before simulating data. This is done for each replicate in
the simulation.

of the traditional approach, drawing the phylogenetic
parameters such as the tree and branch lengths from
a probability distribution and then simulating a single
data matrix on every such draw from the prior (Fig. 1).
In other words, instead of fixing the parameters of the
simulation, we fix the prior probability distribution
from which the phylogenetic parameters are drawn.

We simulated data under the JC69 (Jukes and Cantor,
1969) model and under the general time reversible model
with gamma distributed rate variation (GTR+T"; Tavaré,
1986; Yang, 1993, 1994). The JC69 model is very simple,
assuming that the rate of substitution is equal across sites,
that the four nucleotide frequencies are the same, and
that the rates of change among nucleotides are equal.
The GTR+T model is considerably more complex. The
GTR+T model of DNA substitution allows the rates of
substitution to differ among sites in the sequence (they
are random variables drawn from a gamma distribution
with shape parameter a ), the nucleotide frequencies to be
different, and the rate of substitution among nucleotides
to be different. We simulated data under the JC69 and
GTR+T models, but analyzed the data under these mod-
els as well as many of the models in between the JC69
and GTR+T models. Table 1 shows the models used in
this study and the prior probability distribution of the
parameters for each.

We simulated data matrices of ¢ = 100, ¢ = 500, and
¢ = 1000 sites on trees of six species. We chose to examine

the six species case for a number of reasons. For one, six
species is the smallest number of species for which there
are several tree shapes for unrooted trees. More impor-
tantly, there are only 105 possible unrooted trees for six
species, and the posterior probability of each can be rea-
sonably approximated using Markov chain Monte Carlo.
If we had decided to examine more species, then the pos-
terior probabilities of individual trees would have been
more difficult to accurately estimate. We used MrBayes
v3.0 (Huelsenbeck and Ronquist, 2001) to approximate
posterior probabilities using Markov chain Monte Carlo.
We ran a single Markov chain for 200,000 cycles for each
simulated data matrix, discarding samples taken during
the first 50,000 cycles. For each set of model conditions,
we simulated a total of 10,000 matrices.

Consider just one of the simulations that was per-
formed in this study. In one set of simulations, we sim-
ulated data matrices of ¢ = 100 sites under the GTR+TI"
model of DNA substitution and analyzed the simulated
data matrices under the JC69 model. Each of the 10,000
simulated data matrices was generated as follows: First,
we picked an unrooted tree from the prior probability
distribution of trees. We considered all trees to be equally
probable. Hence, each of the 105 trees had a probability
of 1/105 of being chosen. Second, once the tree was cho-
sen, we assigned branch lengths to the tree. The branch
lengths were randomly assigned by drawing each from
an exponential distribution with parameter A = 5. The
exponential distribution has parameter A. The mean of
the exponential is 1/A and the variance is 1/A%. Hence,
the average branch length on the trees in this study was
1/5 = 0.2 expected substitutions per site. Third, we chose
the nucleotide frequencies from a Dirichlet (5, 5, 5, 5)
distribution. Fourth, we chose the gamma-shape param-
eter for among-site rate variation from an exponential
distribution with parameter 2 (resulting in an average
shape parameter of a = 0.5 over simulations). Fifth, we
chose the rates of substitution by generating six inde-
pendent exponential random variables with parameter
1. These six exponential random variables correspond
to the rates rac, rag, rar, *ca, rcr, and rgr. Sixth, after
the parameters of the model had been chosen, 100 sites
were simulated on the tree. Finally, a Bayesian analysis
was performed on the simulated data matrix by running
a Markov chain for 200,000 cycles. The output from the
Markov chain Monte Carlo allowed the posterior proba-
bilities of individual trees to be approximated. Of course,
because the tree is known, we can ask whether a high
posterior probability also corresponded to a high proba-
bility that the tree was correct. The entire procedure de-
scribed here was repeated 10,000 times. Note that no two
of the 10,000 simulated data matrices had precisely the
same parameter values (i.e., they may have differed in
topology but certainly differed in the branch lengths and
the substitution model parameters). Each of the figures
that summarize the results of the simulations is based on
105 x 10000 = 1050000 data points, and these million
plus data points were assigned (according to posterior
probability) to 20 bins.
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TABLE 1.
probability distribution from which parameters for simulated data sets were drawn, or the settings for the Bayesian analysis of the data. (JC69:

Jukes and Cantor, 1969; F81: Felsenstein, 1981; SYM: symmetric model; GTR: general time reversible model, Tavaré, 1986.)

Parameter settings for the models examined in this study. The prior probability distributions for the parameters specify either the

Model Nucleotide frequencies Substitution rates Gamma rate variation Topology Branch lengths

JC69 Fixed (1/4,1/4,1/4,1/4) Fixed (1,1,1,1,1,1) Fixed (o00) Uniform Exponential (5)
F81 Dirichlet (5, 5, 5, 5) Fixed (1,1,1,1,1,1) Fixed (00) Uniform Exponential (5)
SYM Fixed (1/4,1/4,1/4,1/4) Dirichlet (1,1,1,1,1, 1) Fixed (o00) Uniform Exponential (5)
JC69+TI" Fixed (1/4,1/4,1/4,1/4) Fixed (1,1,1,1,1,1) Exponential (2) Uniform Exponential (5)
SYM+T Fixed (1/4,1/4,1/4,1/4) Dirichlet (1,1,1,1,1,1) Exponential (2) Uniform Exponential (5)
E81+T Dirichlet (5, 5, 5, 5) Fixed (1,1,1,1,1,1) Exponential (2) Uniform Exponential (5)
GTR Dirichlet (5, 5, 5, 5) Dirichlet (1,1,1,1,1,1) Fixed (oc0) Uniform Exponential (5)
GTR+T Dirichlet (5, 5, 5, 5) Dirichlet (1,1,1,1,1,1) Exponential (2) Uniform Exponential (5)

RESULTS AND DISCUSSION
The Meaning of Posterior Probabilities

In the best-case scenario in which all of the assump-
tions of the Bayesian analysis are satisfied, the posterior
probability of a tree is equal to the probability that the tree
is correct. Figure 2 shows the relationship between the
posterior probability for a phylogenetic tree and the fre-
quency at which trees with that posterior probability are
correct (identical to the true tree used in the simulation)
for the four simulations that were performed in which all
of the assumptions of the Bayesian analysis are satisfied.
For large numbers of replicate simulations, the frequency
of correct trees will approximate the “frequentist” prob-
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ability that a tree is correct. Thus, we subsequently refer
to the frequency of correct trees as the probability the
tree is correct in all figures. The relationship is linear,
indicating that posterior probabilities have the meaning
ascribed to them: the posterior probability of a tree is the
probability that the tree is correct (assuming that the model
is correct). Importantly, the Bayesian method is currently
the only phylogenetic method that has this property.

Robustness of Posterior Probabilities

Two sets of simulations were performed in which the
assumptions of the Bayesian analysis were violated. In
the first set, the assumptions of the Bayesian analysis
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FIGURE 2. The relationship between posterior probabilities on trees and the probability that the tree is correct when the assumptions of the

Bayesian analysis are satisfied.
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FIGURE 3. The relationship between posterior probabilities on trees and the probability that the tree is correct when the assumptions of the
Bayesian analysis are satisfied (top graph) or when the model used in the Bayesian analysis is underspecified (all other graphs).

were under-specified. The evolutionary process gener-
ating the DNA sequences followed the GTR+TI" model
of DNA substitution. However, the assumptions of the
Bayesian analysis did not capture all aspects of the pro-
cess that generated the DNA sequences. In the simplest
model examined—the JC69 model—the Bayesian anal-
ysis incorrectly assumed equal nucleotide frequencies,
equal rates across sites, and equal rates of substitution
among nucleotides. In this case, high posterior probabil-
ities corresponded to smaller probabilities that the tree
was correct (Fig. 3). The other models examined had ei-
ther two components of the true model missing (F81,
SYM, and JC69+T") or one component of the true model
missing (SYM+T', F81+T", and GTR). For example, the
F81 model captures the fact that base frequencies are po-
tentially different, but fails to account for the fact that
the actual evolutionary process generating the DNA se-
quences had rate variation across sites and different rates

among the nucleotides. Inspection of the graphs having
one or two components of the true model missing sug-
gests that failure to correctly model among-site rate vari-
ation had a more serious effect on posterior probabilities
than failure to correctly model other aspects of the evolu-
tionary process (Fig. 3); when gamma rate variation was
assumed, the posterior probabilities more nearly have
their intended interpretation.

In the second set of simulations, summarized in Fig-
ure 4, the assumptions of the Bayesian analysis were
violated in a different way. In this set of simulations,
the evolutionary process followed the JC69 model. How-
ever, the Bayesian analysis was overcomplicated, assum-
ing model parameters that were unnecessary. The effect
of using an overspecified model was negligible and re-
sulted in a very slight overestimation of the probability
that a tree was correct. The bias appears to be in the same
direction as the nonparametric bootstrap.
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FIGURE 4. The relationship between posterior probabilities on trees and the probability that the tree is correct when the assumptions of the
Bayesian analysis are satisfied (bottom graph) or when the model used in the Bayesian analysis is overspecified (all other graphs).

We also collected information on the coverage prob-
ability of the 95% credible set of trees and the number
of trees contained in the 95% credible set. These results
are summarized in Table 2 and reinforce the conclusions
drawn from the figures. A 95% credible set of trees is
constructed by first ordering all trees by their posterior
probability. Trees are included in the credible set start-
ing with the tree of highest posterior probability until
the cumulative probability of trees contained in the set
is 0.95. It is unlikely that one can obtain a cumulative
probability of precisely 0.95. We get around this problem
by randomly including or excluding the first tree that
exceeds a cumulative probability of 0.95. For example,
imagine that the posterior probability of one of the 105
trees is 0.90 and the posterior probability of the tree with
the next highest posterior probability is 0.07. Clearly, the
first tree should be included in a 95% credible set of trees.
However, if the second tree is included in the set, then we
do not have a 95% credible set of trees but rather a 97%

credible set. If the tree is excluded, then we have a 90%
credible set. We resolve this problem by including the sec-
ond tree in the set with a probability of 0.05/0.07 = 0.714.
Table 2 shows that when the assumptions of the Bayesian
analysis are satisfied, that the 95% credible set of trees
contains the true tree with a probability that is approxi-
mately 0.95. When the assumptions of the analysis are vi-
olated, then the 95% credible set of trees contains the true
tree with a smaller probability. In the worst case we ex-
amined, the 95% credible set of trees contained the true
tree with a probability of just 0.71. The number of trees
contained in the credible set gives an idea of the vari-
ability of the estimate. When the model is underspeci-
fied (the true model is more complicated than the model
assumed in the Bayesian analysis), the number of trees
contained in the credible set is smaller than it should
be; the posterior probability is concentrated on too few
trees. On the other hand, overspecifying the model has
a much smaller effect on the variability of the estimate.
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TABLE 2. The coverage probability and average size of the 95%
credible set of trees.

Evolutionary Bayesian model Number of  95% credible set  95% credible

process assumptions sites  coverage probability  set size
GIR+TI JC69 100 0.72 6.05
GTR+TI JC69 500 0.71 1.74
GIR+T JC69 1000 0.72 1.28
GTR+I’ F81 100 0.74 6.47
GTR+TI JC69+T 100 091 16.09
GIR+TI SYM 100 0.75 6.37
GTR+I SYM+TI" 100 0.93 16.25
GTR+T GTR 100 0.76 6.64
GIR+T F814T 100 0.94 17.77
GTR+I GTR+I" 100 0.94 16.69
GTR+T GTR+T 500 0.93 4.59
GTIR+TI GTR+T 1000 0.93 2.80
JC69 JC69 100 0.95 4.62
JC69 F81 100 0.95 4.63
JC69 JC69+T 100 0.96 5.50
JC69 SYM 100 0.95 4.70
JC69 SYM+TI' 100 0.96 5.64
JC69 GTR 100 0.95 4.72
JC69 F81+I" 100 0.96 5.53
JC69 GTR+T 100 0.96 5.67

For the simulations where the evolutionary process gen-
erating the DNA sequences followed the JC69 model, the
credible set has about one additional tree in it when the
model is very complex (GTR+T") as compared to when
the model is correct (JC69).

A Comparison of Posterior Probabilities
and Nonparametric Bootstrapping

We also attempted a direct comparison of Bayesian
posterior probabilities with the nonparametric bootstrap
method. Maximum likelihood is the obvious method to
compare to Bayesian posterior probabilities because the
likelihood function can be calculated under the same as-
sumptions for both. However, a direct comparison was
difficult to accomplish. For one, typically implemented
maximum likelihood and Bayesian analysis treat nui-
sance parameters differently. In a maximum likelihood
analysis, the likelihood is maximized with respect to the
nuisance parameters (such as the branch lengths and
substitution model parameters), whereas in a Bayesian
analysis they are integrated over a prior probability dis-
tribution. Also, we could only examine bootstrap propor-
tions for maximum likelihood under the simplest mod-
els. Bootstrap analysis under the more parameter rich
models takes too long to complete. Hence, we only ex-
amined the bootstrap method implemented with max-
imum likelihood under the Jukes-Cantor model (JC69;
Jukes and Cantor, 1969).

Figure 5 shows a comparison of Bayesian posterior
probabilities and maximum likelihood bootstrapping
when the assumptions of the analysis are violated (the
two graphs on the left) and when the assumptions of the
analysis are satisfied (the two graphs on the right). As ex-
pected, the bootstrap method is too conservative when
its assumptions are satisfied. Bootstrap proportions gen-
erally corresponded to higher probabilities of the tree be-

ing correct when the evolutionary process followed the
Jukes-Cantor model and the maximum likelihood analy-
sis also assumed the Jukes-Cantor model. This finding is
consistent with previous simulation studies (Hillis and
Bull, 1993; Alfaro et al., 2003). As noted earlier, there is a
linear relationship between the posterior probability of
a tree and the probability that the tree is correct.

The nonparametric bootstrap is not as biased as the
Bayesian posterior probabilities when the assumptions
of the analysis are violated. When the evolutionary pro-
cess followed the GTR+I" model of DNA substitution,
but the analysis assumed the Jukes-Cantor model, the
bootstrap values more nearly had a linear relationship
with the probability that the tree is correct.

RECOMMENDATIONS

Bayesian inference is the only method available
(with the possible exception of the corrected bootstrap
method), that provides estimates of phylogeny and an
indication of phylogenetic uncertainty that are both cor-
rect and easily interpretable. The posterior probability
of a phylogenetic tree is the probability that the tree is
correct, assuming that the model is correct. On the other
hand, all bets are off when the assumptions of a Bayesian
analysis are not satisfied, the same conclusion reached
by Waddell et al. (2002). In the simulations performed
in this study, the Bayesian method was more sensitive
to underspecification of the evolutionary model than to
overspecification. More specifically, in the simulations
performed here, failure to account for among-site rate
variation more severely affected posterior probabilities
than failure to properly model other aspects of the evolu-
tionary process. Sullivan and Swofford (2001) showed a
similar sensitivity of maximum likelihood when among
site rate variation is not accounted for..

It may be too much to hope that there exists a method
that (1) provides a direct measure of phylogenetic reli-
ability while (2) also being robust to violation of model
assumptions. Clearly, the nonparametric bootstrap is not
such a method. It is already known that it is invalid
to use the bootstrap to measure the probability that a
clade is correct, and one of the simulations performed
in this study further confirms this. The corrected boot-
strap method may more nearly have the correct coverage
probability, but itis currently unknown how sensitive the
corrected bootstrap is to model misspecification. A simu-
lation study that examined the corrected bootstrap could
address the sensitivity of the method to model misspec-
ification (and would represent an impressive amount of
computation because the method is so difficult to im-
plement). The Bayesian method, too, does not fulfill the
properties of providing a correct measure of phyloge-
netic reliability while at the same time being robust to
model misspecification. When its assumptions are sat-
isfied, the Bayesian method correctly measures phylo-
genetic reliability. Unfortunately, it appears to be more
sensitive than the bootstrap method to model violation.

This simulation study was the first that correctly eval-
uated the coverage probability of Bayesian posterior
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FIGURE 5. A comparison of posterior probabilities and nonparametric bootstrap proportions. The top two graphs show the relationship
between posterior probabilities and the probability that the tree is correct. The bottom two graphs show the relationship between bootstrap

values and the probability that the tree is correct.

probabilities. The basic problem in earlier studies is that
they did not treat the model parameters as random vari-
ables. The Bayesian method treats all parameters of a
model as random variables, with a prior probability dis-
tribution on each. Earlier studies had fixed the tree (and
other aspects of the phylogenetic model), and therefore
failed to satisfy the assumptions of the Bayesian method.
Here, we simulated data sets on trees that were first
drawn from a prior probability distribution. In this re-
spect, our simulation satisfied the assumptions of the
Bayesian method.

The results of this study suggest that careful attention
must be paid to the model used in a Bayesian analy-
sis. Specifically, the model should be as complex as pos-
sible while still allowing parameters to be identified.
There are a number of strategies that can be currently
used, such as partitioning data and modelling the evo-
lutionary process separately in each. This can be done
using MrBayes v3.0 (Huelsenbeck and Ronquist, 2001).
The idea is to increase the number of trees visited by
the Markov chain Monte Carlo method, and keep the
Bayesian method from placing too much probability on
too few trees (Castoe et al., 2004; Nylander et al., 2004;
Lin et al., 2004). Unfortunately, there are limits to this
approach. The universe of phylogenetic models is cur-
rently quite small and the types of evolutionary pro-
cesses that are accommodated is limited. One can apply

the current models to small parts of a data matrix, but
if the model fails to capture important evolutionary pro-
cesses, then it is not clear how much improvement there
will be in the estimate of phylogeny or the assessment
of variability in the phylogeny in the Bayesian method.
What is also needed is an expansion of the universe of
possible models. Specifically, virtually all of the mod-
els currently used assume that the evolutionary process
is homogenous over the entire phylogenetic history of
a group. This assumption can be relaxed. For example,
the covarion-like model (Tuffley and Steel, 1997) relaxes
the assumption that the rate of substitution at a site is
constant over time. It might also be possible to relax the
assumption that nucleotide composition is constant over
time. For example, in a Bayesian framework, one might
assume that nucleotide composition changes discretely,
and use Markov chain Monte Carlo to integrate over dif-
ferent histories of nucleotide composition change (e.g.,
in a manner similar to Huelsenbeck et al., 2000). Adop-
tion of this strategy—using more complex models cho-
sen from a more extensive pool of candidate phyloge-
netic models—does not necessarily mean abandoning
formal model choice. It may still be possible to choose
a model that best explains the alignment without intro-
ducing superfluous parameters using Bayesian model
choice (e.g., Huelsenbeck et al., 2004) or information cri-
teria (see Burnham and Anderson, 1998).
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