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Abstract. A new method is presented for use in simulating samples of
disease and normal chromosomes bearing multiple linked genetic mark-
ers under a neutral model of mutation, genetic drift, and recombination.
The method accounts for the potential effects of investigator sampling
bias by allowing for ascertainment of chromosomes according to disease
status and of markers according to a pre-specified polymorphism cutoff
level. The method was implemented in a computer program and applied
to study the general effects of disease mutation age (or frequency), lev-
els of marker polymorphism, and sample size, on pairwise LD between
markers and a disease mutation. It is shown that the average pairwise
LD between a marker and a disease mutation is lower for older, or more
prevalent, disease mutations, as expected. The marker polymorphism
cutoff level also has an important influence on LD. Potential applications
of the method for predicting the power of genome-wide marker-disease
association studies are discussed.

1 Introduction

With the advent of a human haplotype map initiative [1] and the emerging
prospect of large amounts of data on haplotype frequencies and linkage disequi-
librium (LD) in the human genome [2–5], as well as future large-scale projects
aimed at mapping genes influencing complex diseases by marker-disease associ-
ation analysis [6], it has become increasingly important to understand the pro-
cesses determining human genetic variation. Of particular interest is the influence
of underlying evolutionary forces [7, 8] and sample ascertainment strategies [9,
10] on variation observed at commonly used genetic markers, such as single nu-
cleotide polymorphisms (SNPs) and microsatellites. A related question concerns
the potential power of disease-marker association studies that rely on linkage dis-
equilibrium (LD) to locate disease susceptibility genes [6, 11, 12]. Recent studies
have used computer simulations to address these, and other, questions [7, 10, 13,
14].

Most simulation studies generate samples of chromosomes under a neutral
coalescent model, taking account of the population processes (mutation, recom-
bination, genetic drift, etc) that determine patterns of marker polymorphism and
linkage disequilibrium [10, 15]. Such studies are useful for predicting the patterns
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of neutral variation one would expect to see in a random sample of chromosomes
from a population, but the genetic variation will be different in a case-control
study because individuals are ascertained based on disease status. Krugylak [7]
attempted to take account of disease allele frequency by only accepting genealo-
gies with a mutation present at a frequency in the sample that was equal to the
required population frequency of the disease mutation. There are two problems
with this design: (1) for small samples the sample frequency of a mutation will
deviate considerably from the population frequency; (2) disease studies typically
enrich the sample for a disease allele by ascertaining for affected individuals and
the frequency of a disease allele in a sample will therefore be much greater than
its frequency in the population. A case-control sampling strategy enriches the
sample for chromosomes descended from one or more disease mutations and this
has the effect of altering the shape of the underlying genealogy causing it to
differ from that expected under a neutral coalescent model [14, 16]. There is also
an ascertainment effect for markers because SNPs and/or microsatellite markers
are chosen from panels of markers known to be polymorphic [9, 10].

To examine many of the above questions (e.g., the power of case-control
association studies for mapping disease mutations, etc) via simulation studies, a
new simulation method is needed that allows samples to be generated under a
coalescent process with a case-control sampling strategy and polymorphic marker
ascertainment. Here we outline a method to simulate samples under a coalescent
process that allows for these sources of ascertainment bias. Our basic strategy is
to simulate the sample path (over time) of the population frequency of a disease
allele, using a diffusion approximation, and then to simulate the coalescent of a
sample of chromosomes conditional on the sample path of the allele frequency
(using theory for the coalescent process in a population of variable size). This
improves upon an earlier method for simulating a coalescent process with disease
ascertainment proposed by Zollner and von Haeseler [14], eliminating several key
assumptions in their model which will often be violated in practice. In particular,
they assumed that the frequencies of disease mutations remain constant over
time; our diffusion simulation eliminates the need for this assumption.

2 Theory

The ancestral processes of lineage coalescence and recombination (within a pan-
mictic population) traced backwards in time can be represented as a graph, with
recombination events splitting a chromosome to create two ancestors (each car-
rying only a segment of the descendent chromosome), and coalescence events
uniting pairs of chromosomes to generate a common ancestral chromosome [17,
18]. As is usual, this will be referred to as the “ancestral recombination graph.”
One can simulate population samples of chromosomes and genetic markers by
simulating the ancestral recombination graph and then simulating independent
mutations on the lineages of this graph according to a Poisson process. The stan-
dard model of a coalescent process with recombination and mutation assumes
that chromosomes are a random sample from a population (i.e., each is equally
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likely to be sampled) and that the markers are a random sample of loci that
may have any number of alleles segregating in the population, including a single
allele (no polymorphism).

2.1 Coalescent Process with Disease and Marker Ascertainment

Here we propose a procedure for simulating genetic markers on chromosomes
under a coalescent and recombination process taking account of the effects of
both disease and marker ascertainment. Our simulation method is similar to
that of [14] but uses fewer approximations and relaxes some assumptions. It is
assumed that no heterogeneity exists at the disease locus (e.g., all chromosomes
bearing the disease mutation descend from a single ancestral chromosome on
which the disease mutation arose), although this assumption can be relaxed by
simulating multiple disease allele genealogies. Let nD

0 be the number of disease
chromosomes sampled and let nD

t be the number of disease chromosomes an-
cestral to the sample at generation t in the past. Let nN

0 being the number of
normal chromosomes sampled and let nN

t be the number of normal chromosomes
ancestral to the sample at generation t in the past.

Let N0 be the present population size, let Nt be the population size at gen-
eration t in the past, and let pt be the frequency of the disease mutation at
generation t in the past. We define L to be the total number of marker loci
examined and simulate either SNP markers with mutation rate µnc = 10−8 or
microsatellite markers under a stepwise mutation model [19, 20] with mutation
rate µmt = 10−3. Other models of mutation could be easily incorporated. The
map distance between marker 1 and marker L is defined as ρ, the distance be-
tween markers i and j is defined as ρij , and the location of the disease mutation,
denoted as θ, is defined as the distance of the disease locus (in map units) from
marker 1.

2.2 Ancestral Graph with Disease Ascertainment

The coalescent and recombination processes are simulated jointly. The process
is illustrated in figure 1. Note that some time after the generation at which the
disease mutation arose, the disease chromosomes share a most recent common
ancestor (MRCA). After the time of origin of the disease mutation, disease chro-
mosomes only coalesce with one another as do the normal chromosomes. Recom-
binations, on the other hand, can occur both within, and between, genealogies of
the disease and normal chromosomes. If a disease chromosome recombines with
a normal chromosome, this increases the rate of the coalescence-recombination
process in the genealogy of normal chromosomes by one and vice versa. If a
recombination occurs between two disease chromosomes, or two normal chromo-
somes, the effect is to increase the rate by one in the respective class in which the
recombination event occurred (Figure 1). To obtain the waiting times between
events, as well as the type of each event, we simulate three waiting times: (1) the
time until a coalescent event occurs in the sample of disease chromosomes; (2)
the time until a coalescence event occurs in the sample of normal chromosomes;
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Fig. 1. An example genealogy of cases (inheriting a disease mutation) and controls.
The age of the most recent common ancestor (MRCA) of the cases is denoted as T
and the age of the disease mutation as T’. Marker mutations are indicated by Xs and
locations of recombination events by vertical lines on a horizontal line representing
the segment of chromosome spanned by markers. The states of 3 biallelic markers are
indicated by 0s (ancestral) and 1s on chromosomes at the tips of the genealogy.

and (3) the time until a recombination event occurs in the ancestry of either the
normal chromosomes, or the disease chromosomes. To facilitate the simulation of
the disease allele frequency over time, we use a discrete-time model, rather than
a continuous time model as is usual for the coalescent process. The probability
density function (pdf) of the time until a coalescence event occurs in the gene
tree of the disease chromosomes, given that the previous event (coalescence or
recombination) occurred at time t0, is

fD(tD) =

(nD
t0
2

)
2NtD

ptD

exp

{
−

(
nD

t0

2

) tD−1∑
t=t0

1
2Ntpt

}
. (1)

In our simulations, we assumed that the population has grown at an exponential
rate r [21, 22]. In that case equation 1 becomes

fD(tD) =

(nD
t0
2

)
ertD

2N0ptD

exp

−
(nD

t0
2

)
2N0

tD−1∑
t=t0

ert

pt

 . (2)

The pdf of the time until a coalescence event occurs in the gene tree of the
normal chromosomes, given that the last event (coalescence or recombination)
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occurred at time t0, is

fN (tN ) =

(nN
t0
2

)
ertN

2N0(1− ptN
)

exp

−
(nN

t0
2

)
2N0

tN−1∑
t=t0

ert

(1− pt)

 . (3)

The pdf of the time until a recombination event occurs is

fR(tR) = e−(nD
t0

+nN
t0

)tRρ/2. (4)

A method is described below for generating random variables from each of the
density functions of equations 2, 3 and 4 above using either the usual inverse
transformation method or a recursive equation.

2.3 Method for Simulating Events in the Ancestral Graph

To simulate the waiting time, tN∗, until a coalescence occurs in the sample of
normal chromosomes, for example, using the inverse transformation method, we
would first simulate a uniform random variable U ∈ [0, 1] and then solve for tN∗
in the equation

U = 1− FN (tN ),

= 1−
tN∗∑
j=t0

 (nN
t0
2

)
erj

2N0(1− pj)
exp

−
(nN

t0
2

)
2N0

j−1∑
t=t0

ert

(1− pt)


 , (5)

where FN (tN ) is the cumulative density function of tN . Waiting times until
recombinations are simulated from the exponential density of equation 4 using
the inverse transformation method. If tD < tN and tD < tR, the next event is the
coalescence of a random pair of chromosomes in the genealogy of the sampled
disease chromosomes at time tD. If tN < tD and tN < tR, the next event is the
coalescence of a random pair of chromosomes in the genealogy of the sampled
normal chromosomes at time tN . Otherwise, the next event is a recombination
involving a randomly chosen chromosome at time tR.

In order to speed up simulation of the time until coalescence, instead of faith-
fully following the CDF and using inverse transformation, we make use of the
probability that a coalescence occurs at time t∗−1 to calculate the probability of
a coalescence at time t∗. To simulate the genealogy of the disease chromosomes,
for example, this is done by multiplying a value,

Q (tD∗) =
[

p(t∗−1)e
r

pt∗
exp

{
−C er(t∗−1)

p(t∗−1)

}]
×Q (t∗ − 1) , (6)

where C is equal to ntD
0

(ntD
0
− 1)/ (4N0) .

Using the above recursion to calculate the probability for each generation, the
simulation procedure can be expressed as follows:
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1. Generate a random number U , between 0 and 1.
2. Let j = t0, Q = C ert0

pt0
, F = Q.

3. If U < F , return t∗ = j. Otherwise, go to step 4.
4. According to equation 6, Q = Q × [

p(tD
∗−1)e

r

ptD
∗ exp

{
−C er(tD

∗−1)

p(tD
∗−1)

}
], F =

F + Q, j = j + 1.
5. go to Step 3.

Once the disease chromosomes coalesce to a MRCA, the rate of coalescence
in the genealogy of disease chromosomes is zero until either the time is reached
at which the disease mutation arose, or a recombination occurs. If the sample
of normal chromosomes coalesce to a MRCA before the disease mutation arose
the rate of coalescence in the genealogy of normal chromosomes is also zero until
either the time is reached at which the disease mutation arose, or a recombination
occurs. At times, in the past, greater than the age of the disease mutation the
rate of the coalescence process is scaled by nN

t + 1 until the common ancestor
of the disease chromosomes coalesces with a normal chromosome; the rate is
then scaled by nN

t . If a recombination event occurs during the simulations the
position of the recombination event is chosen uniformly on the interval of length
ρ spanning the markers; this assumes that if recombination hotspots are present
they are accounted for by the map lengths of the intervals (other more complex
models of recombination with explicit hotspots could also be used).

2.4 Diffusion Model of Disease Allele Frequency

In our simulations, we fix the age of the disease mutation, and then simulate the
change of frequency of the mutation over time, conditional on non-extinction.
To simulate the change of frequency of the disease mutation we assume that the
process can be modeled using a diffusion approximation [24]. We simulate the
diffusion process using a procedure suggested by Kimura and Takahata [25]. The
basic idea is that the allele frequency at the next generation, given the current
frequency, is normally distributed with expectation and variance determined
by the diffusion model. If population size is constant, N , then E[pt+1] = pt and
σpt+1 = pt(1−pt)/2N . If the population size is growing exponentially with rate r
and current population size N0 then E[pt+1] = pt and σpt+1 = pt(1−pt)/(2N0e

rt).
If an allele has fewer than 4 copies in the population, then the number of alleles
in the next generation is instead simulated as a Poisson random variable, using
the branching process approximation for a rare allele [24], with parameter xer.
This is because the diffusion approximation is no longer accurate in this case. In
our simulation method, the initial copy number of the disease mutation when it
arises is x = 1.

2.5 Models of Mutation and Marker Ascertainment

Mutations are simulated on the ancestral recombination graph generated ac-
cording to the procedure outlined above. Conditional on the graph (genealogy),
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the distribution of the positions of mutations on branches is uniform under a
Poisson process model of mutation. However, in a coalescent simulation with
recombination, the only relevant mutations are those that occurred on portions
of ancestral chromosomes that were transmitted to one or more chromosomes
in the sample (recall that with recombination only certain segments of recombi-
nant chromosomes are ancestral to the sample). To improve the efficiency of our
simulation procedure, we therefore used a simple algorithm to label markers on
those chromosomal segments (branches of the ancestral recombination graph)
that leave descendents in the sample.

The basic algorithm proceeds as follows: (1) all markers on all sampled chro-
mosomes are initially labeled with integer 1; (2) the network is traversed from
the tips to the final MRCA; (3) at each recombination event markers peripheral
to the recombination point are labeled with integer 0 and if a marker already is
labeled zero it retains its label regardless of its position relative to the current
recombination point; (4) at each coalescence event if markers at a locus on the
two coalescing chromosomes are 0/1, 1/0 or 1/1 then the locus is labeled 1 on
the branch preceding the coalescence event and if they are 0/0 it is labeled 0.
The algorithm proceeds until all loci on all branches have a binary integer index.

Mutations are simulated at each locus on all branches labeled 1 according to a
Poisson process (with rate µ×t on a branch of length t). This mimics a sampling
process in which the investigator continues typing SNPs or microsatellite markers
for a particular sample of chromosomes until a total of L polymorphic markers
are obtained. A Jukes-Cantor model [23] is used to simulate SNP mutations
(this model assumes that nucleotides A, T, G and C occur in equal frequencies),
although more complex models with transition/transversion bias, unequal base
frequencies, etc could be easily incorporated. In practice, with the low rate of
nuclear mutation only one substitution will occur on a genealogy in most cases, so
the substitution model is rather unimportant. A stepwise mutation model is used
for modeling microsatellite mutation [19] such that each mutation (with equal
probability) either increases, or decreases, the numbers of repeats by one unit
(e.g., changes the length by four in a tetranucleotide repeat, etc). The number
of (potentially polymorphic) microsatellite markers is specified by the user as a
function of the size of the interval. The simulation results that we present here
are for SNP markers only. Note that under our simulation procedure both the
number (and positions) of polymorphic SNPs for a given simulation are random
variables.

3 Simulation Results

In this section, we describe a simulation study conducted to examine the prop-
erties of our method as well as the general features of the distribution of LD
in ascertained samples of disease and normal chromosomes. The simulations
examine the effects of disease mutation age and frequency, levels of marker poly-
morphism, and sample size, on average levels of pairwise LD between markers
and a disease mutation.
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3.1 Pairwise patterns of LD in a growing population

We assumed a population size of 106 with an exponential growth rate of 0.01.
SNPs are distributed along a region of 1 cM (1000 kb). The disease mutation
is to the left of all markers. The sample size is set to be 50 disease and 50
normal chromosomes in both figures 2 and 3. Figure 2 shows the influence of
disease mutation age on LD. Disease mutation ages were chosen so that expected
population frequencies of 0.0001, 0.001, 0.03, 0.1, 0.2 would be obtained. These
correspond to disease mutation ages of 164, 600, 710, 840 and 910 generations.
The polymorphism cutoff level was 0.05. In figure 3, the disease age was set to
be 840 generations and the polymorphism cutoff levels were 0.05, 0.1, 0.2, and
0.3. In figure 4, the disease ages and polymorphism cutoff level are the same as
those used in figures 2 and 3. The sample sizes are 10/10, 20/20, 50/50, 100/100,
250/250 disease/normal chromosomes. Linkage disequilibrium is measured using
D and r2 [26]. In total, 100 replicate simulations were carried out for each set
of conditions and the average values of pairwise LD are plotted. We applied the
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Fig. 2. Simulation results showing average pairwise linkage disequilibrium (LD) be-
tween markers and a disease mutation as a function of map distance and disease muta-
tion age. LD is measured using either |D| (panel A) or r2 (panel B). Younger mutations
tend to show greater levels of LD with adjacent markers and average LD decreases
monotonically with map distance. Because the locations of polymorphic markers are
random under our simulation method map distances are given as intervals.
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simulation method to investigate the effects on pairwise LD of disease mutation
age (frequency), marker allele polymorphism cutoff level, and sample size. The
results suggest that the average LD between a disease allele and markers is
lower for older (more prevalent) disease mutations and higher for younger (less
prevalent) mutations (Figure 2). The marker polymorphism level also has an
important effect on LD. Figure 3 suggests that selecting marker loci with higher
polymorphism levels increases the average LD and could potentially increase the
power of an LD mapping study. This effect decreases with an increasing the map
distance of the marker from the disease mutation. From figure 4, we see that the
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Fig. 3. Simulation results showing average pairwise linkage disequilibrium (LD) be-
tween markers and a disease mutation as a function of map distance and the cutoff
for the minimum level of polymorphism for markers. LD is measured using either |D|
(panel A) or r2 (panel B). More polymorphic markers tend to show greater LD with
the disease mutation. Average LD decreases monotonically with map distance. Because
the locations of polymorphic markers are random under our simulation method map
distances are given as intervals.

LD may be biased with small sample sizes. For the simulation conditions used
in our study, there is a positive bias in LD for markers near the disease locus
(at a distance of less than about .004 Morgans) and a slight negative bias for
markers beyond this distance. If more chromosomes are sampled (more than
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100), the average LD changes little. More extensive simulations are needed to
fully understand the extent and importance of such bias.
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Fig. 4. Simulation results showing average pairwise linkage disequilibrium (LD) be-
tween markers and a disease mutation as a function of the number of control and
normal chromosomes sampled. LD is measured using either |D| (panel A) or r2 (panel
B). Smaller samples tend to show greater LD between markers and the disease muta-
tion when markers are nearby (less than .004 Morgans away) and larger samples show
greater LD when markers are further away (more than .004 Morgans distant). Because
the locations of polymorphic markers are random under our simulation method map
distances are given as intervals.

4 Discussion

There is currently a great deal of interest, and optimism, concerning the prospect
of using population level linkage disequilibrium to detect markers that are closely
linked to a disease locus. Whether such genome-wide association studies will have
the power to detect common genetic variants associated with complex diseases
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remains uncertain. It appears likely that the potential power of such studies
minimally depend on factors such as the demographic history, etc of the pop-
ulation(s) under consideration, population sampling strategies, and population
frequencies of underlying disease loci. The goal of this paper has been to de-
velop a more realistic simulation algorithm to generate population samples for
the purpose of studying the influences of such factors.

There are, of course, many additional factors that we have not considered
that can be expected to influence the feasibility of studies aimed at identifying
disease loci using population-level marker-disease associations. For example, the
relationship between genotype and phenotype can be very complex and factors
such as the degree of penetrance, phenocopy rate, etc can be expected to greatly
influence the power. Fortunately, it is straightforward to simulate phenotypes
conditional on genotypes at a disease locus under arbitrarily complex models
(including multilocus quantitative genetic models) and therefore the simulation
methodology developed here could be used in a two-step modeling approach
whereby the genotypes are simulated using our algorithm and the phenotypes are
simulated conditional on the genotypes under arbitrary models of the phenotype-
genotype relationship.
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