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Abstract.—A new method is developed for calculating sequence substitution probabilities using Markov chain Monte Carlo
(MCMC) methods. The basic strategy is to use uniformization to transform the original continuous time Markov process into
a Poisson substitution process and a discrete Markov chain of state transitions. An efficient MCMC algorithm for evaluating
substitution probabilities by this approach using a continuous gamma distribution to model site-specific rates is outlined.
The method is applied to the problem of inferring branch lengths and site-specific rates from nucleotide sequences under
a general time-reversible (GTR) model and a computer program BYPASSR is developed. Simulations are used to examine
the performance of the new program relative to an existing program BASEML that uses a discrete approximation for the
gamma distributed prior on site-specific rates. It is found that BASEML and BYPASSR are in close agreement when inferring
branch lengths, regardless of the number of rate categories used, but that BASEML tends to underestimate high site-specific
substitution rates, and to overestimate intermediate rates, when fewer than 50 rate categories are used. Rate estimates
obtained using BASEML agree more closely with those of BYPASSR as the number of rate categories increases. Analyses
of the posterior distributions of site-specific rates from BYPASSR suggest that a large number of taxa are needed to obtain
precise estimates of site-specific rates, especially when rates are very high or very low. The method is applied to analyze 45
sequences of the alpha 2B adrenergic receptor gene (A2AB) from a sample of eutherian taxa. In general, the pattern expected
for regions under negative selection is observed with third codon positions having the highest inferred rates, followed by
first codon positions and with second codon positions having the lowest inferred rates. Several sites show exceptionally
high substitution rates at second codon positions that may represent the effects of positive selection. [Bayesian phylogenetic
inference; Markov process; Metropolis-Hastings algorithm; molecular evolution; site-specific rates.]

The important influence that a misspecified DNA sub-
stitution model can have on the accuracy of many phylo-
genetic inference methods is now well established. The
effects of overspecifying versus underspecifying a model
can be very different, however. For example, recent sim-
ulation studies suggest that Bayesian posterior probabil-
ities of phylogenetic trees can be inflated if an overly
simple substitution model is used (Huelsenbeck and
Rannala, 2004; Lemmon and Moriarty, 2004), whereas
an overly complex model can produce accurate poste-
rior probabilities if the true model is a submodel. Many
studies have shown that taking account of among-site
rate variation, in particular, is very important for obtain-
ing accurate point estimates of phylogeny and branch
lengths (reviewed in Yang, 1996), as well as accurate pos-
terior probabilities for trees (Huelsenbeck and Rannala,
2004). From a biological perspective, parameter-rich sub-
stitution models may lead to new patterns and insights
that would be missed using a simpler model. For ex-
ample, allowing dN/dS ratios to vary across codons in
a gene can highlight important residues that have been
under positive or negative selection (reviewed by Yang,
2003) and such phenomena would be missed using a
model that ignores among-site variation in the substitu-
tion process.

It is becoming evident that more realistic parameter-
rich substitution models should be used for phylogenetic
inference, especially in the Bayesian framework. Com-
monly used models are known to be too simple and often
fit sequence data poorly (Goldman, 1993; Huelsenbeck
and Rannala, 1997). However, more complex substitu-
tion models that allow dependence among sites or site-
specific substitution rates can lead to dramatic increases

in computational difficulty. Parametric methods for phy-
logenetic inference require that time-dependent transi-
tion probabilities be calculated to infer the likelihood of
a sample of DNA sequences. These transition probabili-
ties have closed-form solutions for simple models, such
as the Jukes-Cantor model (JC69; Jukes and Cantor 1969),
the Felsenstein model (F81; Felsenstein, 1981), etc., but
more complex substitution models, such as the general
time-reversible model (GTR; Rodrı́guez et al., 1990), do
not have simple analytical solutions for the transition
probabilities and these are instead calculated numeri-
cally by exponentiating the instantaneous rate matrix
(Felsenstein, 2004).

The computational expense of numerical substitution
probability calculations via matrix exponentiation in-
creases dramatically with an increase in the number of
elements in the rate matrix. One of the major limitations
on the complexity of the substitution models that may
be used in phylogenetic inference is therefore the cost
of numerically calculating the transition probabilities
from the instantaneous rate matrix. Recently, Jensen and
Pedersen (2000) have proposed a Markov chain Monte
Carlo (MCMC) method for calculating transition prob-
abilities for very complicated substitution models. The
principle of the method is to model the complete set of
(unobserved) nucleotide states visited by the chain along
a branch separating two nodes. This allows arbitrarily
complex models because only the transition probabilities
for the states actually visited by the MCMC need to be
specified. Such ideas have been applied to analyze com-
plex substitution models with context-dependent rates
of substitution; for example, sequences with overlap-
ping reading frames under different selective pressures
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(Pedersen and Jensen, 2001), models with dependent
substitutions among codons determined by the struc-
tural properties of a protein (Robinson et al., 2003), and
models with dependent substitution rates among sites
that account for such factors as CpG content (Hwang
and Green, 2004).

In this article, we develop an alternative approach that
allows very complex substitution models to be used in
phylogenetic inference and also makes use of MCMC
methods to calculate transition probabilities. Our ap-
proach does not require that the specific states that are
visited be modeled, however, and instead only models
the number of state changes on each branch as an added
variable in the MCMC. The method we propose relies
on a “uniformization” (sometimes referred to as “ran-
domization”) of the Markov substitution process (Jensen,
1953; Ross, 1983). The idea is quite simple, yet the re-
sulting algorithm can potentially be much more efficient
than calculating transition probabilities via matrix expo-
nentiation, or augmenting the complete history of state
changes, particularly in models that allow different sites
to have different instantaneous rate matrices. The model
of gamma-distributed rate variation across sites (Yang,
1993) is an example of such a model. We illustrate the
method by implementing a GTR+� model using a con-
tinuous gamma distribution and show that the posterior
distributions of branch lengths and site-specific substi-
tution rates can be accurately (and efficiently) inferred,
even for a large phylogeny of 250 species.

THEORY

A continuous time Markov process with instantaneous
rate matrix Q = {Qi j } can be viewed as a jump process
in which the waiting times between events are exponen-
tially distributed such that the parameter of the exponen-
tial distribution is determined by the overall rate at which
the process leaves any given state. When a transition oc-
curs, the probability of the state change is given by a dis-
crete Markov chain with transition probabilities equal to
the normalized (to sum to 1) off-diagonal elements from
the instantaneous rate matrix of the continuous-time pro-
cess. The basic idea underlying uniformization is that
a general instantaneous rate matrix (for which leaving
rates vary across states) can be transformed to create a
new process in which the waiting times between events
are independent and identically distributed exponential
random variables with rate ν regardless of the current
state of the process. This is accomplished by allowing
“ficticious” changes of a state to itself. The overall rate
for the uniformized process ν must be greater than any of
the rates in the original instantaneous rate matrix. Before
describing the application of uniformization for calculat-
ing nucleotide substitution probabilities, an example is
presented to illustrate the general method.

Example: Uniformization of a Two-State Markov Process

To illustrate the uniformization procedure in a con-
crete case, we consider a simple two-state continuous

time Markov process with instantaneous rate matrix,

Q =
(−a a

b −b

)
. (1)

Letting ν = a + b, the Markov chain specifying the tran-
sition probability at each jump events is

P =
(

1 − 1
ν
a 1

ν
a

1
ν
b 1 − 1

ν
b

)
=

(
b

a+b
a

a+b
b

a+b
a

a+b

)
. (2)

In this particular example, all powers of the matrix are
identical to the original (i.e., the matrix is idempotent)
except, of course, the zero power, which is the identity
matrix. To calculate transition probabilities under this
process, we marginalize by summing over the product of
the discrete transition probability given M events and the
probability of M events under the uniformized process,

pi j (t) =
∞∑

M=0

(νt)Me−νt

M!
× P M

i j . (3)

This simplifies to give

p11(t) = b + ae−(a+b)t

a + b
.

p12(t) = a (1 − e−(a+b)t)
a + b

.

p21(t) = b(1 − e−(a+b)t)
a + b

.

p22(t) = a + be−(a+b)t

a + b
. (4)

We can also solve for the transition probabilities by expo-
nentiating the matrix. The eigenvalues are 1 and −(a + b),
the matrix of right eigenvectors is

H =
(

1 − a
b

1 1

)
,

and the inverse of H is

H−1 =
(

b
a+b

a
a+b

− b
a+b

b
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)
.

If we define D to be a matrix with diagonal elements that
are the eigenvalues, then
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,
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which agrees with the previous result obtained by uni-
formization of the process. In complex models, it is
natural to use MCMC to evaluate the sum of Equation 3,
and such a procedure will be used in developing an

MCMC method that evaluates transition probabilities
numerically.

Data, Model, and Parameters

The model that we will consider allows for rate vari-
ation across sites and branches. Let x = {xkl} be a ma-
trix of s aligned nucleotide sequences of n sites where
xkl is the nucleotide present at site l of sequence k.
Let π = {πT, πC, πA, πG} be the equilibrium nucleotide
frequencies and let θ be the parameters of the substitu-
tion model. Let τ = {T, w} represent an unrooted phy-
logeny of s species (e.g., a topology, T, and 2s-3 branch
lengths w = {wl}). Define f (x|τ, θ , π ) to be the likelihood
of the sequence data given the phylogenetic tree and
other model parameters. For simplicity, the analyses pre-
sented in this article will treat T as known and focus on
estimating w and other parameters of the substitution
model, etc., but the approaches can be extended to in-
ference of phylogenetic trees as well. Initially, we will
focus on methods for calculating the substitution proba-
bilities (under a GTR model) for a single site along a sin-
gle branch of a tree, with an example given for the JC69
model. Later, we present an example calculating the pos-
terior distributions of site-specific rates, branch lengths,
and other parameters, on a phylogenetic tree under the
GTR+� model. A simulation study was carried out for
small numbers of species (s = 8) to evaluate the perfor-
mance of the method relative to another implementation
of the continuous gamma model of among-site rate vari-
ation in the program BASEMLG (included in the PAML
software package; Yang [1997]). Simulations were also
carried out for larger numbers of species, in which case
the performance is compared with that of the discrete
gamma model implemented in PAML with differing
numbers of rate categories. The number of rate categories
determines the accuracy of the approximation to the
continuous gamma; with increased numbers of rate cat-
egories, the approximation is expected to be more accu-
rate, but the computations also become more expensive.

Uniformization of the Markov Substitution Process

The GTR model allows each type of nucleotide sub-
stitution to have a separate rate, with the constraint that
the process is reversible, so that, for example, the instan-
taneous rate of transition from A to C multiplied by the

stationary probability of A equals that from C to A mul-
tiplied by the stationary frequency of C, and so on. The
instantaneous rate matrix of the GTR model, “normal-
ized” so that the expected number of substitutions per
unit time is 1, is

Q = B




−(aπC + bπA + cπG) aπC bπA cπG
aπT −(aπT + dπA + eπG) dπA eπG
bπT dπC −(bπT + dπC + πG) πG
cπT eπC πA −(cπT + eπC + πA)


 ,

where the nucleotides are ordered T, C, A, G, the instanta-
neous rate matrix is multiplied by a normalizing constant
(Yang, 1993),

B = 1
2

(
1

πT(aπC + bπA + cπG) + πC(dπA + eπG) + πGπA

)
,

and aπT is the rate of substitution from nucleotide C to
T , bπA is the rate of substitution from nucleotide T to
A, πA is the stationary frequency of nucleotide A, etc.
We use the technique of uniformization (see Ross, 2001)
to transform the Markov process of DNA substitution
into a time-homogeneous Poisson process in which sub-
stitution events occur with rate ν and the type of each
substitution, conditional on a substitution event having
occurred, is specified by a discrete Markov chain with
probability elements

P = B
ν


ν(1/B − A1) aπC bπA cπG

aπT ν(1/B − A2) dπA eπG
bπT dπC ν(1/B − A3) πG
cπT eπC πA ν(1/B − A4)


 ,

where ν = 1/πmin and πmin = mini πi for all i ∈
{G, C, A, T} is the smallest nucleotide frequency. For the
normalized instantaneous rate matrix,

∑
i �= j πi Qi j = 1

and, therefore, πi Qi j ≤ 1 and Qi j ≤ 1/πi so that 1/πmin
is a bound on the maximum rate. The empirical nu-
cleotide frequencies in the sampled sequences are used
as estimates of the stationary nucleotide frequencies. We
define,

A1 = 1
ν

(aπC + bπA + cπG),

A2 = 1
ν

(aπT + dπA + eπG),

A3 = 1
ν

(bπT + dπC + πG),

A4 = 1
ν

(cπT + eπC + πA).

The probability that a substitution from nucleotide i to j
occurs on a branch of length w, pi j (w), can then be written
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as the infinite sum

pi j (w) =
∞∑

M=0

(νw)Me−νw

M!
× P (M)

i j , (5)

where P (M)
i j denotes element i , j of the Markov chain de-

rived for the discretized process under uniformization
raised to the Mth power.

Example: Jukes-Cantor Model

To illustrate the method, we consider the implemen-
tation of the simple JC69 model. The instantaneous rate
matrix, Q, is a special case of the GTR model obtained by
setting a = b = c = d = e = 1 and πC = πT = πG = πA =
1/4. The normalizing constant is B = 4/3 and the Q ma-
trix is

Q =




−1 1/3 1/3 1/3
1/3 −1 1/3 1/3
1/3 1/3 −1 1/3
1/3 1/3 1/3 −1


 ,

where ν = 1/0.25 = 4. The uniformized matrix is

P =




3/4 1/12 1/12 1/12
1/12 3/4 1/12 1/12
1/12 1/12 3/4 1/12
1/12 1/12 1/12 3/4


 .

The transition probability on a branch of length w is (for
i = j),

pii (w) =
∞∑

M=0

(4w)Me−4w

M!
× P (M)

i i ,

= 1
4

+ 3
4

e−4/3w,

and for i �= j ,

pi j (w) =
∞∑

M=0

(4w)Me−4w

M!
× P (M)

i j ,

= 1
4

(1 − e−4/3w).

These transition probabilities agree with those obtained
by conventional methods. In this example we have eval-
uated the sum over the number of transitions on the
branch analytically to demonstrate that the correct tran-
sition probabilities are obtained; in practice, the method
will use MCMC to evaluate the sum over the number of
transitions.

Metropolis-Hastings Algorithm

To formulate the problem in terms of an MCMC algo-
rithm, note that Equation 5 can be written as a marginal
probability for the transition from nucleotide i at one
end of a branch to j at the other end, with the expectation
taken over M,

pi j (w) =
∞∑

M=0

Pr(M, i → j)

and the Metropolis-Hastings algorithm can then be
used to obtain the marginal distribution, rather than
evaluate the sum explicitly. One simple implemen-
tation is to use a symmetrical proposal density for
M : g(M∗) = 1/3 if M∗ = M, M∗ = M − 1, or M∗ = M +
1 and M �= 0; g(M∗) = 1 / 3 if M = 0 and M∗ = 1; or
g(M∗) = 2/3 if M = 0 and M∗ = 0. An initial value for
M is randomly assigned from the positive integers and
at each iteration of the algorithm a new state M∗ is
proposed for M from g(.) and accepted with probability

α = min

{
1,

e−νw(νw)M∗
/M∗!P (M∗)

i j

e−νw(νw)M/M!P (M)
i j

.

}

For M > 1, the ratio at the right of the above equation
simplifies to become (P (M+1)

i j /P (M)
i j ) × νw/(M+ 1) if

M∗ = M + 1 and (P (M−1)
i j /P (M)

i j ) × M/(νw) if M∗ = M − 1.
The formula differs if the pruning algorithm is instead
used (see below).

Calculating the transition probabilities as outlined
above has the advantage of allowing one to integrate
over the sum in an MCMC analysis, augmenting the data
by treating M as an unobserved random variable in the
chain. This is particularly useful for implementing site-
specific rates because the substitution rate parameter r
only occurs as a simple term in the Metropolis-Hastings
ratio and does not feature in the discrete Markov chain
determining the conditional substitution probabilities.
Note that rt = w, where t is the branch length in units of
time (using the same timescale as was used to specify the
rate r), whereas w is the branch length in units of expected
numbers of substitutions. This allows a common substi-
tution matrix to be applied across sites with only a sim-
ple recalculation of the weighting term across branches
when a new rate is proposed for a specific site. The trade-
off is that the MCMC algorithm now must also integrate
over the numbers of substitutions on each branch. How-
ever, for most data sets the expected number of substi-
tutions per branch is small (usually less than about 4),
so a relatively low number of matrix powers are needed.
Also, because the transition matrix for the discrete pro-
cess does not depend on the substitution rate parame-
ter, this matrix calculation only needs to be performed
once if one is integrating over the substitution rates
alone.
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MODELING RATE VARIATION AMONG SITES

To illustrate the method, we apply our algorithm to es-
timate branch lengths and site-specific substitution rates
assuming a continuous gamma distribution as the prior
for rates across sites. Let r = {rm} be a vector of site-
specific rates (of length n), where rm is the rate for site
m. Define f (rm | α) to be the prior density of rates for the
mth site with α to be the parameters of the prior on rates.
The marginal posterior probability of the phylogeny can
be obtained by taking the expectation over the prior den-
sity of site-specific rates (cf. Yang, 1993),

f (τ | θ , x, α, λ, π ) = C(θ , π, α, λ, x) f (τ | λ)
n∏

m=1

× E[ f (xm | τ, rm, θ , π ) f (rm | α)], (6)

where f (τ | λ) is the prior on phylogenetic trees and
C(θ , π, α, λ, x) is a normalizing constant obtained by inte-
grating the equation to the right of C over all tree topolo-
gies and branch lengths,

1
C(θ , π, α, λ, x)

=
∫

τ

f (τ | λ)
n∏

m=1

E[ f (xm | τ, rm, θ , π )

× f (rm | α)]dτ.

If one is primarily interested in estimating site-specific
rates and substitution model parameters, rather than
phylogeny, the problem can be reformulated as

f (r, θ | x, α, λ, π ) = C(π, α, λ, x)
∫

τ

f (τ | λ)
n∏

m=1

× f (xm | τ, rm, θ ) f (rm | α) f (θ )dτ. (7)

If the tree topology is known, the integral is evaluated
over the branch lengths; otherwise, it is an integral over
the branch lengths and a sum over the topologies. Sim-
ilarly, the joint probability density of site-specific rates,
substitution model parameters, and branch lengths con-
ditioned on topology, T, is

f (r, w, θ , α, λ | x, π, T) = C(π, T, x) f (w | λ)
n∏

m=1

f (xm | τ, rm, θ )

× f (rm | α) f (θ ) f (α) f (λ). (8)

The focus of this article will be to evaluate the probability
density presented in Equation 8 above.

Augmented Likelihood

We use data augmentation to integrate over two ad-
ditional vectors of random variables, the numbers of
transitions on each branch and the unobserved ances-
tral nucleotides at the internal nodes of the tree. It is also

possible to explicitly sum over the ancestral nucleotides
using the usual pruning algorithm (Felsenstein, 1981) to
calculate the likelihood conditional on the number of
transitions. We have implemented the pruning algorithm
in our program, but preliminary analyses of simulated
data suggest it is less computationally efficient than the
data augmentation strategy. Define M = {Mlm}, where
Mlm is the number of transitions at site m on branch l of
a phylogenetic tree T. Further, let x− = {x−

kl } be a matrix
of the s − 2 ancestral nucleotide sequences on the tree.
Define θ = {a, b, c, d, e} to be a matrix of the parameters
of the GTR substitution model (with a 5RR parameter-
ization; see Zwickl and Holder [2004]). The augmented
likelihood is

f (M, x, x− | r, τ, π, θ ) =
n∏

m=1

2s−3∏
l=1

f (xm, x−
m | θ , Mlm, rm, wl , π, T)Pr(Mlm | rm, wl).

(9)

According to the theory developed above, the probability
of Mlm transitions at site m on branch l in the uniformized
Markov process is Poisson with probability distribution

Pr(Mlm | rm, wl) = e−νwl rm (νwlrm)Mlm

Mlm!
.

The probability of a change from nucleotide i to j at site
m on branch l, given Mlm transitions, is P (Mlm)

i j (this is the
conditional likelihood).

Posterior Probability Density of Rates and Branch Lengths

Following Yang (1993), the site-specific substitution
rate parameter is assumed to have a prior density that is
a gamma distribution with mean one and shape param-
eter α so that

f (rm | α) = αe−αrm (αrm)α−1

�(α)
.

We assume an exponential distribution with common
parameter λ for wl and we use the Dirichlet prior for θ
suggested by Zwickl and Holder (2004). We use uniform
hyperpriors on λ and α and we use empirical estimates
for π . The posterior density is then,

f (r, w, θ , α, λ | x, π, T) =∑
M

∑
x−

f (w | λ) f (M, x, x− | r, τ, π, θ ) f (r | α) f (θ ) f (α) f (λ).

(10)

The density of Equation 10 is evaluated using MCMC.
Changes to the parameters M and r are proposed in the
MCMC as described previously. The ancestral states x−
are proposed from a discrete uniform on the state space of
nucleotides. Details of the proposal algorithms and other
features of the MCMC implementation are provided in



264 SYSTEMATIC BIOLOGY VOL. 55

the documentation to the program. A computer package
Bayesian Phylogenetic Analysis Using Site-Specific Rates
(BYPASSR) was written in C++ and is freely available
from http://rannala.org.

Computational Complexity

Equation 8 above can, in principle, be evaluated di-
rectly via MCMC methods. However, it is clearly compu-
tationally expensive to do so for nontrivial substitution
models. For example, each time a new site-specific rate
is proposed in the MCMC one must recalculate transi-
tion probabilities for each of the (2s − 3) branches. If one
diagonalizes the rate matrix (to allow exponentiation of
the rate matrix to calculate the transition probabilities),
a calculation of the marginal likelihood for one branch
(applying the pruning algorithm) requires 2h2 + h op-
erations (where h is the dimension of the substitution
matrix). This ignores the initial cost of calculating the
eigenvalues and eigenvectors of the rate matrix, which
only needs to be done once if the MCMC is integrating
only over r and w. In the uniformized MCMC calcula-
tion, the log of the Metropolis-Hastings ratio (when a rate
change is proposed for a site) is a simple difference of pro-
posed and current rates and of the logs of proposed and
current rates, multiplied by the number of transitions,
for each branch.

Because the rate of convergence of the MCMC method
and the number of samples from the chain that are
needed for accurate inferences will vary depending on
the specific data, initial parameter values used for the
chain, etc., it is difficult to compare the computational
efficiency with that of an exact likelihood calculation
without carrying out extensive simulation studies. In our
limited simulation analyses we have found that accurate
inferences can be obtained using our new method for
250 taxa and 500 sites with a few hours of computing
time on a modern computer. The implementation of the
continuous gamma distribution in BASEMLG does not
allow analyses of more than 8 taxa due to computational
limitations.

SIMULATION STUDY

A simulation study was carried out to assess the per-
formance of the method in inferring rates and branch
lengths. First, to check that the BYPASSR program is
producing estimates of site-specific rates that are similar
to the maximum likelihood estimates from BASEMLG
when a continuous gamma density is used, we simulated
eight sequences under a simple JC69 model (Jukes and
Cantor, 1969) and estimated site-specific rates using the
mean of the posterior densities of rates from BYPASSR
and the mean of the conditional distribution of site-
specific rates from BASEMLG. The program BASEMLG
uses as its point estimate of the site-specific rate the con-
ditional expectation of the site-specific rates obtained by
integrating over the conditional distribution of rates with
other model parameters fixed at their maximum likeli-
hood values (Yang and Wang, 1995). This is an empirical
Bayes estimator. The results are show in Figure 1, which

FIGURE 1. Plot of mean posterior site-specific rates from the
BYPASSR program versus empirical Bayes estimates of rates obtained
using the BASEMLG program (a JC69 model of DNA substitution was
used for both programs). Data for the plot were simulated for 8 taxa
and 500 sites assuming a JC69 model.

plots the estimates from BYPASSR versus those from
BASEMLG. The relationship between the estimates is
very consistent and linear suggesting that the two meth-
ods are producing similar rate estimates (Fig. 1).

A larger simulation study was carried out to examine
the effects of both sequence length, n ∈ (500, 2000, 5000),
and number of taxa, s ∈ (10, 20, 50, 250), on the accuracy
of site-specific rate inferences. For each of several combi-
nations, two data sets were simulated using the following
procedure: (1) generate a random tree from a birth-death
process (all labelled histories equally likely); (2) simulate
branch lengths from an exponential prior with λ = 20;
(3) simulate site-specific rates using a gamma distribu-
tion with α = 0.5; (4) simulate sequences under a GTR
model with parameters a = 0.25, b = 0.75, c = 1.25, d =
1.75, e = 2.25πT = 0.1, πC = 0.2, πA = 0.3, πG = 0.4. The
effect of using a discrete gamma approximation (Yang,
1994) on the accuracy of estimates of site-specific rates
obtained using BASEML was examined for various num-
bers of rate categories. The BASEML program offers two
options for obtaining posint estimates of site-specific
rates. The first option uses a weighted average of rate for
each category multiplied by the conditional probability
of the category. This is a discrete approximation to the
conditional expectation used in BASEMLG. The second
option uses the rate for the site class having the highest
posterior probability. We used the first option in our anal-
yses. Figures 2 and 3 are typical of the results obtained.
Here the mean posterior rate (from BYPASSR) and the
weighted mean of the rate for each site (from BASEML)
are plotted against the actual rate for each site (Figs. 2
and 3, respectively). It is evident that even with 20 rate
categories, the rate estimates obtained using the discrete
approximation tend to underestimate the true rates, and
this is most evident with 5000 sites because more extreme
rates are observed when more sites are examined.

Another interesting observation from the simulation
study is that increasing the number of sites has little
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FIGURE 2. Plot of mean posterior site-specific rates from the
BYPASSR program versus true rates. Data for the plot were simulated
using either 10 taxa (A and B) or 50 taxa (C and D) and either 500 sites
(A and C) or 5000 sites (B and D) under a GTR model.

FIGURE 3. Plot of empirical Bayes estimates of rates obtained using
the BASEML program (with 20 rate categories for the discrete gamma
approximation) versus true rates. Data for the plot were simulated
using either 10 taxa (A and B) or 50 taxa (C and D) and either 500 sites
(A and C) or 5000 sites (B and D) under a GTR model.

effect on the variance of the posterior distribution of
rates from BYPASSR, while increasing the number of
taxa has a very dramatic effect (Fig. 4). Figure 4A shows
the posterior distributions obtained for a site with true
substitution rate r = 0.35, either 10, 20, 50, or 250 taxa
and n = 500 sites sampled. With only 10 taxa, the poste-
rior looks essentially identical to the prior (in this case, a
gamma distribution with α = 0.5). With increasing num-
bers of taxa, however, the distribution becomes more
modal with the mode shifting towards the location of
the true rate. Figure 4B shows the results for another
simulation with the true rate at a site again r = 0.35 and
n = 5000 sites. In this case, the posterior densities for
10, 20, and 50 taxa are very similar to those observed in
Figure 4A (n = 500 sites). In general, the posterior den-
sity is much more concentrated with a clear mode when
rates are in the intermediate range. Figures 4C, D show
the posterior densities obtained using 10, 20, 50, or 250
taxa and either a much higher rate (r = 2.17) (Fig. 4C) or
a much lower rate (r = 0.09) (Fig. 4D). In both cases, the
variance of the posterior is increased and estimates are
clearly influenced by the prior for fewer than 250 taxa.
Because the mean rate in the prior is 1, estimates based on
a small number of taxa for sites with very low rates tend
to have positive bias (overestimating true rate), and for
sites with very high rates tend to have negative bias (un-
derestimating true rate). Clearly, a large number of taxa
are needed to get precise estimates of site-specific rates.

SUBSTITUTION RATES IN THE EUTHERIAN ALPHA 2B
ADRENERGIC RECEPTOR

The alpha 2B adrenergic receptor gene (A2AB) is
roughly 1 kb in length and codes for a heptahelical G
protein–coupled catecholamine receptor protein that ap-
pears to play a role in regulating blood pressure. The
A2AB gene contains no introns, and studies examining
sequence variation among mammals have revealed that
different protein domains vary greatly in their degree
of conservation, suggesting that variable selection pres-
sures operate across the gene (Madsen et al., 2002).

Nucleotide sequences of 45 A2AB genes were retrieved
from GenBank for 44 eutherian species (2 different hu-
man sequences were included), and the correspond-
ing amino acid sequences were aligned using ClustalW
(Thompson et al., 1994). The amino acid alignments were
back-translated to nucleotide sequence alignments us-
ing the tranalign program in the EMBOSS package (Rice
et al., 2000). All sites that contained gaps or ambigui-
ties were removed prior to the analysis. In total there
were 663 sites with gaps, 24 ambiguous sites, and 12 sites
with both gaps and ambiguities. A total of 732 sites re-
mained that were used for the analyses. The maximum
likelihood tree topology was inferred using the step-
wise addition option of the BASEML program in the
PAML package and is shown in Figure 5. Our tree closely
matched the tree published by Madsen et al., (2002). A
complete list of the species analyzed, their GenBank ac-
cession numbers, and the aligned sequences are available
from http://rannala.org. The effect of using a discrete
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FIGURE 4. Plot of posterior distribution of site-specific rates for simulated data analyzed using the BYPASSR program. A and B show posterior
distributions for different numbers of taxa with an actual rate of 0.35 (indicated by vertical line) and either 500 sites (A) or 5000 sites (B). C and
D show the posterior distributions when the actual rate is either much higher, r = 2.17 (C), or much lower, r = 0.09 (D).

FIGURE 5. Maximum likelihood phylogenetic tree inferred for 45
eutherian sequences of the A2AB gene from 44 species (rooted using
the marsupials as an outgroup). Plotted using the TreeView software
(Page, 1996). See Materials and Methods for details of analysis.

gamma approximation (Yang, 1994) on the accuracy of
MLEs of site-specific rates obtained using BASEML was
examined by varying the number of rate categories.

The BYPASSR program was used to analyze the A2AB
sequences. We jointly inferred the posterior distribution
of site-specific substitution rates, branch lengths, param-
eters of the GTR model, λ, the parameter of the prior
on branch lengths, and α, the parameter of the prior on
site-specific rates. For purposes of comparison, the same
parameters (apart from λ, which is not defined for the
likelihood method) were estimated by maximum likeli-
hood using BASEML with a GTR model and a discrete
gamma approximation with either 5, 20, or 50 rate cat-
egories. We ran the MCMC for 1.2 × 106 iterations, dis-
carding the first 6 × 105 iterations as burn-in. Inferences
were based on three independent chains for each run.
The estimates from BYPASSR were highly consistent be-
tween runs (as judged from a scatterplot of posterior
means) and the estimates of θ = {a, b, c, d, e}, α, and w
were also very similar between BYPASSR and BASEML.
Table 1 presents the estimates of θ and α, obtained from
the mean of the marginal posterior densities from two
BYPASSR runs (each using three chains for inferences)
and the estimates obtained from BASEML using either
5, 20, or 50 rate categories.

Figure 6 shows a scatter plot of the branch length
and site-specific rate estimates from BYPASSR (using the
mean of the posterior distribution) versus estimates from
BASEML with either 5 (A and B), 20 (C), or 50 (D) rate cat-
egories. There is very close agreement between branch
length estimates from the two programs even if only 5
rate categories are used (A). This agrees with earlier find-
ings (see Yang, 1996) that accurate phylogenetic inference
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TABLE 1. Estimates of shape parameter α of gamma prior on site-
specific rates, and five relative rates from GTR model, a, b, c, d, e obtained
from the mean of the posterior distribution of two independent runs
(each with three independent chains) of the BYPASSR program (run 1
and run 2) as well as empirical Bayes estimates from BASEML using a
discrete approximation to the gamma distribution with either 5, 20, or
50 rate categories.

BYPASSR BYPASSR BASEML BASEML BASEML
Parameter (run 1) (run 2) (5 cat) (20 cat) (50 cat)

α 0.530 0.532 0.516 0.529 0.523
a 0.890 0.887 0.856 0.867 0.866
b 0.255 0.254 0.241 0.241 0.242
c 0.237 0.237 0.227 0.229 0.229
d 0.331 0.328 0.324 0.321 0.320
e 0.174 0.174 0.171 0.170 0.170
Tree length 3.41 3.45 3.50 3.54 3.58

can be carried out using a discrete gamma approximation
with relatively few rate categories. Figure 6B to D show
a scatter plot of site-specific rates (in units of expected
numbers of substitutions) inferred using BYPASSR ver-
sus BASEML with either 5, 20, or 50 rate categories. With
5 rate categories (B), there is a close agreement for rates
less than 1, but BASEML appears to overestimate rates
at sites with intermediate rates (between 1 and 3) and
underestimate rates at sites with high rates (greater than
3). The rate estimates agree more closely with BYPASSR

FIGURE 6. Comparison of estimated branch lengths and site-
specific rates obtained using BYPASSR and BASEML programs. A
plots mean branch lengths from the posterior distribution generated
by BYPASSR (horizontal axis) against estimates of branch lengths gen-
erated using BASEML with five rate categories (vertical axis). B, C, and
D plot the mean site-specific rates from the posterior distribution gen-
erated by BYPASSR (horizontal axis) against estimates of site-specific
rates generated using BASEML (vertical axis) with either 5, 20, or 50
rate categories, respectively.

as the number of rate categories increases toward 50;
however, even with 50 rate categories (D) very high, site-
specific rates are still systematically underestimated by
BASEML.

The mean of the posterior distributions of site-specific
substitution rates for four domains of the A2AB gene,
IL2, EL2, TM5, and TM6, are shown in Figure 7 (A, B,
C, and D, respectively). All four domains display a large
amount of variation in substitution rates across sites. The
TM5 and TM6 domains (C and D) show the trend that
is typical for coding regions, with third codon positions
having the highest substitution rates and second codon
positions the lowest, with rates at first codon positions
intermediate between these two extremes. This is the ex-
pected pattern for negative selection acting at the level
of the amino acid sequence.

The EL2 domain (Fig. 7B) is atypical with rates at
second codon positions exceeding those of first codon
positions for a large proportion of sites. At two sites (po-
sitions 461 and 482) the mean rate at the second posi-
tion even exceeds that of the third codon position. This
may indicate positive selection operating in this domain.
The IL2 domain (Fig. 7A) appears to be under stronger
negative selection than the other domains, with a pre-
dominance of substitutions at third codon positions and
only one codon (at position 3) for which the mean pos-
terior rate at the second codon position exceeds that of
the first codon position. The site-specific rates inferred
using BASEML using 20 rate categories are also shown
in the graphs. It is clear that for sites at which BYPASSR
infers an intermediate mean rate, the BASEML inferred
rate is typically higher, and for sites where it infers a
high rate, the BASEML rate estimate is typically lower.
This is caused by the discrete approximation used for the
gamma distribution in BASEML, and the effect decreases
with an increase in the number of rate categories used.

DISCUSSION

In this article, we have presented a new technique
for efficiently calculating substitution probabilities us-
ing complex models by uniformization of the Markov
substitution process. The method is applied to infer site-
specific rates and a program, BYPASSR, is presented. The
method appears to provide estimates of branch lengths
that agree closely with those inferred by empirical Bayes
methods using a discrete gamma approximation imple-
mented in the program BASEML. However, the discrete
gamma approximation appears to cause systematic un-
derestimates of rates for rapidly evolving sites unless a
large number of rate categories are used. Our analyses
of the posterior distributions of site-specific rates suggest
that a large number of taxa are needed to accurately infer
rates. These findings agree with previous analyses of the
effect of taxon sampling on estimates of site-specific rates
using simplified models by Pollock and Bruno (2000). As
the number of rate categories in the discrete gamma ap-
proximation is increased, the site-specific rate estimates
obtained using BASEML approach more closely those
obtained using BYPASSR.
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FIGURE 7. Mean posterior substitution rates at first, second, and third codon positions of the IL2 domain (A), EL2 domain (B), TM5 domain
(C), and TM6 domain (D) of the A2AB gene inferred using BYPASSR and empirical Bayes estimates of rates inferred using BASEML (with 20
rate categories).

The general approach of uniformization should have
broad application in phylogenetic inference, potentially
allowing much more complex substitution models to be
efficiently implemented. We have demonstrated the use-
fulness of uniformization and data augmentation for the
specific problem of modeling among-site rate variation.
However, the method should be useful for modeling
any substitution process for which a continuous-time
rate matrix can be specified. This might include com-
plicated models of dependence between sites, etc. One
obvious extension that will be very efficient would be
to simultaneously model both among-site rate variation
and among-lineage rate variation. The same advantages
incurred when modeling among-site rate variation will
apply here also (e.g., no need to recalculate the discrete
matrix product when a change is proposed for a lineage
specific rate, etc.).
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