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Methods for extracting and amplifying sequences using ancient DNA (aDNA) can be prone to errors caused by
postmortem modifications of the DNA strand. A new statistical method is developed for predicting errors in aDNA
sequences caused by such processes. In addition to the canonical DNA substitution model parameters, a discrete Markov
chain is used to describe nucleotide substitutions occurring via postmortem degradation of the aDNA sequences. A
computer program, BYPASSR-degr, was developed implementing the method and was used in subsequent analyses of
simulated data sets under the new model. Simulation studies show that the new method can be powerful and accurate in
identifying damaged sites. The method is applied to analyze aDNA sequences of Etruscans, Adélie penguins, and horses.
No significant signals of degradation were observed at any sites of the aDNA sequences we analyzed.

Introduction

Recent advances in molecular genetics allow DNA to
be extracted, amplified, and sequenced from ancient tissues
(Pääbo 1989). Conclusions drawn from a study of ancient
DNA (aDNA) often generate a lot of interest in the scientific
community, especially when they do not correspond to
prior expectations. This is particularly true when human re-
mains are analyzed. Recent criticisms focus on the possi-
bility of contamination of the ancient samples with
modern DNA (Hoelzel 2005). To reduce this possibility,
meticulous DNA extraction procedures are followed and
researchers adhere to a strict set of procedural guidelines
(Cooper and Poinar 2000). However, the validity of an an-
cient sample may also be compromised by postmortem
damage (Hoelzel 2005). In living organisms, DNA damage
is repaired by various enzymatic mechanisms. However,
once the metabolic pathways of a cell cease to operate,
the DNA molecules begin a progressive decay. The decay
rate is influenced by a variety of factors related to the en-
vironment and the storage conditions. Biochemical pro-
cesses subsequent to cell death cause the reduction of
nucleotide sequence information in many ways: breakage
of the DNA into 100- to 500-bp fragments, fragmentation
of bases and sugars, loss of amino groups, and so on (Pääbo
et al. 2004). Several of these postmortem aDNA modifica-
tions can block amplification during polymerase chain re-
action (PCR), whereas others allow PCR products to be
obtained, but with incorrect bases incorporated and main-
tained in the amplification products. These kinds of PCR
artifacts, termed miscoding lesions, are commonly repre-
sented by 2 types of transitions: (A / G)/(T / C) (type
I) and (C/ T)/(G/ A) (type II) (Hansen et al. 2001), the
second type being observed more frequently in nuclear and
mitochondrial DNA (Binladen et al. 2006).

The continuous improvement of amplification techni-
ques has reduced the number of such artifacts, but the pre-
cise rate, or pattern, of occurrence of miscoding lesions
remains difficult to estimate. An approximate rate of post-

mortem damage was calculated by Hofreiter et al. (2001) by
comparing the PCR products of ancient samples with a da-
tabase reference sequence. These authors concluded that
miscoding lesions are unlikely to be more frequent than
0.1%. The overall number of transitions attributed to
DNA damage processes is suspected to be inflated because
it may include some errors caused by the PCR amplification
technique itself (Gilbert et al. 2007). An even smaller num-
ber of miscoding lesions, mimicking substitutions that
cause evolutionary changes, influence phylogenetic analy-
ses aiming at estimating the probability that particular sites
have undergone changes. Considering an alignment of re-
duced length aDNA sequences (typically a few hundred nu-
cleotides), miscoding lesions can lead to higher estimated
substitution rates at the degraded sites and consequent over-
estimates of overall levels of polymorphism.

As experimental procedures improve, the rates of en-
zymatic errors are being reduced leaving miscoding lesions
as the most likely cause of misincorporated nucleotides in
aDNA samples. Computational and statistical approaches
aimed at addressing this problem are currently too simplis-
tic. One early method, for example, uses parsimony prin-
ciples to construct median-joining networks of the clones
(using a weighted distance measure between 2 sequences
obtained by counting the number of differences); the result-
ing sequences, inferred by assuming the minimum number
of changes and clustered into a network, are taken to rep-
resent the unsampled sequences from which the observed
sequences were derived (Bandelt et al. 1999). The postpro-
cessing of this method was recently improved by calculat-
ing a statistic for each of the sequences in the median vector
based on current knowledge concerning the types of sub-
stitutions characterized as miscoding lesions (Helgason
et al. 2007). The network-based method suffers from sev-
eral weaknesses, the main one being that it ignores uncer-
tainties in the reconstructed ancestral sequences. A
Bayesian solution to this problem was pursued by Ho
et al. (2007) who introduced a parameter that describes
the nucleotide error rate at the tips for sequences incorpo-
rated into a general model used for phylogenetic inference.
A weakness of this approach is that it is not sufficiently spe-
cific to account for the biases in degradation-induced nucle-
otide change evident from recent experimental analyses.
The Ho et al. (2007) method assumes that the same substi-
tution process applies to both evolutionary substitutions
and degradation damage because it only allows for
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a difference in the rate of substitution at tips and not a dif-
ference in the relative rates of substitutions to different nu-
cleotides. Thus, substantial differences in frequency among
different types of miscoding lesions (e.g., type I vs. type II)
(Gilbert et al. 2007) are not accounted for and there is
a greater risk of removing genuine polymorphisms as dam-
age. Empirical evidence clearly indicates that the patterns of
nucleotide substitution are very different under these 2 pro-
cesses, and this should be explicitly accounted for in the
model.

In the present work, we address the problem of mis-
incorporated nucleotides in aDNA data by extending the
flexible framework for modeling DNA substitution pro-
cesses described in Mateiu and Rannala (2006) to explicitly
model aDNA errors. In addition to the canonical DNA sub-
stitution model parameters, a discrete Markov chain is used
to describe nucleotide substitutions occurring via postmor-
tem degradation of the aDNA sequences. A discrete Mar-
kov chain is the appropriate formulation because the DNA
degradation process does not appear to depend on time
(branch lengths) and instead depends on the conditions
of preservation and so on.

Theory
Rate Heterogeneity, Data Augmentation, and
Uniformization

In molecular phylogenetics, site-specific substitution
rates can be integrated into a Bayesian formulation by al-
lowing the Metropolis–Hastings algorithm to integrate over
the unobserved rate values, for which a prior was specified.
In our formulation, following Yang 1993, substitution rates
are modeled assuming a continuous, unit mean, gamma
density prior. Conditional on a known topology, T, and as-
suming a molecular clock, the joint posterior density of site-
specific rates, substitution model paramaters, and branch
lengths is

f ðr;w; h; a; k; ljx; TÞ}f ðwjk; lÞYn
m5 1

f ðxmjT;w; rm; hÞf ðrmjaÞf ðhÞf ðaÞf ðkÞf ðlÞ;
ð1Þ

where r 5 {rm} is a vector of site-specific rates (of length
n), with rm being the rate at site m, f (rm|a) is the prior den-
sity of rates for the mth site (with a specifying the variance
of the prior on rates), f(w|k, l) is the birth–death prior den-
sity of branch lengths, w 5 {wl}, with sampling parameter
fixed at 0.15, k and l are the parameters of the birth–death
prior on branch lengths (Yang and Rannala 1997) (for
which we used uniform hyperpriors), h represents the pa-
rameters of the substitutionmodel, and x5 {xml} is a matrix
of l aligned nucleotide sequences ofm sites (where xml is the
nucleotide present at site m of sequence l).

Mateiu and Rannala 2006 introduced 2 additional vec-
tors of random variables: the numbers of transitions on each
branch and the unobserved ancestral nucleotides at the in-
ternal nodes of the tree. Explicit modeling of the number of
substitutions on the tree allowed us to use the uniformiza-
tion procedure as an efficient alternative to calculate tran-
sition probabilities along the branches of the tree. The
detailed description of the transformation of a continuous

time Markov nucleotide substitution process into an equiv-
alent Poisson substitution process is given by Mateiu and
Rannala (2006). By treating the nucleotides at the internal
nodes as random variables in the chain, one avoids the need
to calculate the conditional probabilities on subtrees (as in
the pruning algorithm [Felsenstein 1981]) but instead di-
rectly evaluates the ancestral nucleotides in a Markov chain
Monte Carlo (MCMC) step.

Using the notation x�5
�
x�ml

�
for a matrix of the l � 2

ancestral nucleotide sequences on the tree and M 5 {Mlm}
forMlm number of transitions at site m on branch l of a phy-
logenetic tree T, the augmented likelihood is

f ðM; x; x� ;wjr; p; h; TÞ

5
Yn
m5 1

Y2s� 3

l5 1

f ðxm; x�
m jh;Mlm; rm;wl; p; TÞPrðMlmjrm;wlÞ:

ð2Þ

According to the uniformized Markov process, the proba-
bility ofMlm transitions at sitem on branch l is Poisson with
probability distribution

PrðMlmjrm;wlÞ5
e� mwlrmðmwlrmÞMlm

Mlm!
:

Modeling Miscoding Lesions

The miscoding lesions generated during amplification
of an aDNA template are predominantly characterized by 4
types of substitutions with 2 phenotypic outcomes: (A /
G)/(T/ C) and (C/ T)/(G/ A) (Binladen et al. 2006).
Miscoding lesions were detected in tissues thousands of
years old (Willerslev et al. 2003) as well as museum sam-
ples tens or hundreds of years old and even samples of 4-
year-old dried tissues (Pääbo 1989). As the accumulation of
substitutions is not a strict function of time, the generation
of miscoding lesions cannot be modeled in the same way as
the substitution process on the branches of a phylogenetic
tree. Instead, a discrete Markov process in which the 4 pos-
sible substitutions are allowed with a small rate is a simple
and straightforward way to describe the process. The tran-
sition probability matrix for this process is

D5 dfklg 5

0
BB@

p q z z
q p z z
z z p q
z z q p

1
CCA;

where each line has to sum to 1 and the rows and columns
represent T,C,A, andGnucleotides.Most of the nucleotides
are expected to not be affected by degradation and this is
manifested by a value of p close to 1. This is a discrete time
analog of the Kimura (1980) 2-parameter model. A more
complex Markov model could be easily incorporated using
the same general framework if needed, including a model in
which each possible substitution has a unique rate. Further-
more, one could allow each site to have a different degrada-
tion transition matrix. To avoid overparameterizing the
model, we assume a global matrix of degradation rates in
the sequel. We note that it is possible that in some cases
the degree of aDNA damage may be approximately
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predicted by measures such as the thermal age of a sample,
for example, which is a combination of the mean environ-
mental temperature and absolute age. If a series of samples
have been preserved at the same, consistent temperature
(e.g., in permafrost), then the amount of postmortemdamage
could potentially be predicted from age. To allow for such
effects one could reintroduce a time-dependent model to test
for age-dependent rates.However, suchdetailed information
is currently not widely available for most aDNA samples.

Substitutions caused by the degradation process are
captured by parameter q of our model, whereas the unlikely
transversions are represented by parameter z. Adding the
degradation process to the preexisting phylogenetic tree,
we can think of degradation as a substitution process hap-
pening on an edge that connects the sequence extracted
from the aDNA with a hypothetical sequence that existed
at the instant in the past at which the organism died. In
figure 1, this is represented by evolving the aDNA sequen-
ces from the hypothetical nodes to the tips along the ‘‘deg-
radation’’ edges, whereas the nucleotides at hypothetical
nodes A#, B#, and C# are obtained according to their prob-
abilities in the usual stochastic formulation of the DNA
substitution model. Formally written, for a mixture of s con-
temporary sequences and U aDNA sequences, each of
length n, the augmented likelihood becomes

f ðM; x; x� ; x�jr; T;w; p; h;DÞ

5
Qn

m5 1

Q2s� 3

l5 1

QU
u5 1

Qn
v5 1

f ðxm; x�
m jh;Mlm; rm;wl; p; TÞ

PrðMlmjrm;wlÞPr
�
x�uvjDuvÞ;

ð3Þ

where u is the hypothetical sequence and x�uv is a nucleotide
at the hypothetical sequence u at site v.

Metropolis–Hastings Algorithm

In our model, the degradation process is a time-
independent process and the age of the aDNA is irrelevant.
TheBYPASSR program (available from http://www.rannala.
org [Mateiu and Rannala 2006]) was modified to distin-
guish between aDNA and contemporary DNA samples
and to allow the addition of the hypothetical ancestral nodes
for aDNA sequences. The new program BYPASSR-degr
performs these tasks and is available at www.rannala.org.
The nucleotides at the hypothetical nodes become random
variables in the chain together with the degradation param-
eters p, q, and z for which we used a uniform prior. A Di-
richlet distribution was used to propose new values for the
parameters p, q, and z in the MCMC. The probability den-
sity function of the Dirichlet distribution for a vector of 3
parameters, x 5 (x1 5 p, x2 5 q, x3 5 z), is

f ðxjaÞ5 1

BðaÞ
Y3
i5 1

xai � 1
i ; ð4Þ

where a 5 (a1, a2, a3) is the parameter vector with ai �
0 and B is a normalizing constant

BðaÞ5
Q3

i5 1 CðaiÞ
Cða0Þ

; ð5Þ

and

a0 5
X3
i5 1

ai:

The marginal means and variances of the distribution are ai/
a0 and ai

�
a0 � ai

��
a20
�
a0 þ 1

�
; respectively. One method

for sampling from the Dirichlet is to draw y1, y2, y3 from
independent gamma distributions with common scale
and shape parameters a1 5 a0 � x1, a2 5 a0 � x2, a3 5
a0 � x3 where for each yi, x#i5yi

.P3
i51 yi (Gelman

et al. 2004). We propose values for the parameters from
a Dirichlet with means equal to the current parameter values
while a0 is a scaling parameter. Once the new set of deg-
radation parameters is proposed, the Metropolis–Hasting
ratio is calculated as

R5

8>>><
>>>:
1;

"Yn
i5 1

Ym
j5 1

dkl
�
x#
�

dklðxÞ

#

�

C
�P3

i5 1
a0x

#
i

�Q3

i5 1
C
�
a0x#i

� �
Q3

i5 1

�
xi

�a0x
#
i � 1

C
�P3

i5 1
a0xi

�Q3

i5 1
C
�
a0xi

� �
Q3

i5 1

�
x#i

�a0xi � 1

9>>>=
>>>;
;

ð6Þ

with the likelihood ratio evaluated across all sites m at hy-
pothetical nodes n.

Next, a nucleotide at a random site and hypothetical
node is chosen as a candidate for a proposed change.
The likelihood ratio is the product of 2 fractions. The first
term is given by the substitution probabilities in degradation
matrix D corresponding to the proposed and current

D E
B’ C’A’

A B C
FIG. 1.—Phylogenetic tree illustrating the model used to accommo-

date postmortem degradation in the analysis of aDNA. Degradation edges
(shown in red) connect ancestral sequences A#, B#, and C# (the sequences
existing at the time of death) with the sampled sequences A, B, and C.
The sequences at nodes D and E are contemporary.
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nucleotide at the hypothetical node. The second fraction is
the ratio of transition probabilities along the branch con-
necting the hypothetical node with its parent node, a process
described by the uniformized substitution matrix M. The
acceptance ratio in this case is written as

R5

�
1;

Da#b

Dab
� Mca#

Mca

	
;

where a and a# are the current and proposed nucleotides at
the randomly chosen hypothetical node, b is the nucleotide
at the end of the edge connecting the hypothetical node to
the ancient nucleotide, and c is the nucleotide at the same
site at the parent node of the chosen hypothetical node.

Simulation Analysis of Statistical Performance

Simulation studies were used to evaluate the perfor-
mance of our new method by examining the accuracy of
estimates of parameters of the site degradation model
(for which the true values are known), the accuracy of
the method in identifying sites that are known to have un-
dergone degradation, and so on. Currently, most extracted
aDNA sequences have been mitochondrial and analyses
have focused on comparisons of relatively closely related
sequences for which a molecular clock assumption is likely
to be satisfied; we therefore focused on testing the model
and program using data generated under a strict molecular
clock. A program was written in Cþþ to simulate random
clock-like trees. The program EVOLVER (PAML) (Yang
2007) was then used to generate sequences on the simulated
trees under a specified DNA substitution model and
Gamma distribution parameter a, allowing rate heterogene-
ity across sites. A second program was developed, which
continues to ‘‘evolve’’ the sequences for the nodes corre-
sponding to ancient data. The parameters p, q, and z are
set to specific values and a proportion q of the total sites
at the hypothetical nodes (randomly chosen) are allowed
to degrade according to the Markov chain model of degra-
dation outlined above. The location and the types of deg-
radation changes are stored for postanalysis comparison.
The simulated data sets were analyzed with the specific ob-
jectives of assessing the accuracy of the new method in re-
covering sites in the simulated data known to be degraded,
investigating the extent of bias in the estimates of site-
specific rates when degradation processes are ignored
and evaluating the optimal proportion of aDNA sequences
in a data set necessary to recover (with high probability) the
original nucleotides at the damaged sites.

Initially, 6 data sets of 20, 30, 40, and 50 sequences,
each comprising 500 sites, were generated for random trees
of total length 1 (in units of expected substitutions). A gen-
eral time-reversible (GTR) model with parameters a 5 1,
b5 2, c5 3, d5 4, e5 5 and nucleotide frequencies pT5
0.1, pC 5 0.2, pA 5 0.3, and pG 5 0.4 was assumed. The
shape parameter, a, of the Gamma distribution was varied
allowing different levels of rate variation among sites, a 5
0.3, 0.5, or 1.0. In all the data sets, the number of aDNA
sequences was 10 and the degradation parameter q was set
to be either q 5 0.005, 0.05, or 0.2, with z5 0 in all cases.
In total, 36 alignments were analyzed with BYPASSR-

degr, using 6 million iterations in the ‘‘burn-in’’ phase
and 6million iterations in the sampling phase (during which
2,000 samples were collected). Besides the site-specific
rates, branch lengths, and GTR parameter estimates, we ex-
amined the posterior means of the nucleotides at the aDNA
nodes. If the method is highly accurate, the nucleotide with
the largest posterior mean should match the nucleotide
known (from the simulation) to be present immediately
prior to the point at which degradation occurs. The detailed
results of each run are shown in table 1. The last 2 columns
in the tables represent the method’s ability to identify true
changes calculated as the proportion of damaged sites iden-
tified when a posterior probability of 0.95 is used as the
criterion for accepting an alternative nucleotide at an aDNA
site and the false-positive rate calculated as the proportion
of sites that were incorrectly identified as damaged.

We are interested in comparing the site-specific sub-
stitution rates inferred when damaged data are analyzed us-
ing a model that allows for the presence of degraded sites
with those obtained using a model that does not allow for
the possibility of degraded sites. We expect a significant
difference between the 2. On the other hand, we expect
to obtain similar results when we use degraded data with
the degradation model implementation (BYPASSR-degr)
and data without degradation, both analyzed using the
BYPASSR-degr implementation of the degradation model.
The similarity is evident from the correct assignment of the
nucleotides at the degraded nodes and sites that recreates
the sequences before the inclusion of the damaged nucleo-
tides. A typical result of this model testing approach is
shown in figure 2, in which data sets generated with a
5 0.5 and degradation matrix parameters p 5 0.95 and
q5 0.05 are analyzed. A good fit in this case indicates that
the model is accurate in the estimation of site-specific sub-
stitution rates, even in the presence of degraded sites.

An important difference is observed between the pos-
terior mean site-specific substitution rates obtained when
data with incorporated errors are analyzed using a model
that integrates over the uncertainty in the aDNA data versus
a model that ignores the degraded nucleotides (fig. 3). In the
later case, the presence of 5% degraded sites creates the ap-
pearance of a higher number of substitutions in the data
which is reflected in a higher a (a20seqs 5 1.49 ± 0.24,
a30seqs 5 1.30 ± 0.19, a40seqs 5 1.67 ± 0.29,a50seqs 5
1.45 ± 0.24) and longer branch lengths (fig. 3B panels).
The comparison between the mean posterior substitution
rates in the 2 situations (degraded data analyzed with
BYPASSR-degr and BYPASSR) shows a significant re-
duction of rate variation among sites that causes the lower
rates to be higher and vice versa (fig. 3A panels).

A larger simulation study was performed on data sets
with additional sequences and different proportions of
aDNA. Following the same procedure as described in the
previous paragraphs, we started with random trees of either
50, 100, or 150 taxa and generated data sets with 1/2 or 1/4
of the sequences representing aDNA. For each combina-
tion, 2 values of the degradation parameter, q, were used:
q 5 0.01 and 0.05, producing 24 data sets in total. Table 2
shows the results of our simulations. The results show that
the power to detect damaged sites increases with increasing
numbers of taxa and/or an increase in the proportion of
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aDNA sequences present in the sample. The estimates of a
based on the posterior means for these analyses tend to
slightly overestimate the true value, probably due to the rel-
atively short branch lengths and small numbers of sites ex-
amined. In this case, the prior can be expected to influence
the posterior potentially leading to some bias.

Analysis of Etruscan HVR-I Mitochondrial aDNA

A genetic study on the remains of 80 Etruscans, the
pre-Roman population of Italy, was published in 2004
by Vernesi et al. (2004). Mitochondrial DNA was extracted
from bones following strict criteria to avoid contamination
or other possible artifacts in the data. The authors decided
on a final set of 27 sequences of the HVR-I region (360 nt in
length), obtained from a consensus of multiple clones, as
clean and reliable for further detailed analysis. The authors
provided us with these sequences as well as DNA sequen-
ces of the same mitochondrial region from contemporary
populations (106 Basques, 69 Cornish, 45 Druz, 240 Saami,
74 Sardinians, and 49 Tuscans) to investigate the possibility

of damaged sites. In the first step of our analysis, we ex-
tracted nonidentical sequences belonging to the contempo-
rary population samples resulting in an alignment of 208
sequences of 360 nt each.We then assembled 2 smaller data
sets by choosing a subset of sequences from the contempo-
rary data set. Table 3 shows the number of sequences an-
alyzed from each population. For each of the data sets, we
chose every third and fifth sequence from the complete
alignment of 208 sequences. By varying the number of se-
quences in the data sets representing the same DNA region,
we expect to obtain similar posterior densities of site-
specific rates and the similar inferred locations for damaged
sites in the aDNA sequences.

For each of the data sets, the phylogenetic tree was
obtained by maximum likelihood using the HKY85 substi-
tution model and 4 categories for the discrete gamma dis-
tribution approximation (Yang 2007). BYPASSR-degr was
used to analyze the sequences under a molecular clock as-
sumption, using the newly implemented theory, with 30–40
million iterations in the burn-in stage and the same number
of iterations in the sampling stage, during which 2,000 sam-
ples were collected. Ten independent chains were run for

Table 1
Estimates for the Parameters of the Degradation Model with a Fixed Number of 10 aDNA Sequences

Data Set Ancient True a a True p True q p q Power Type I Error

20 taxa 10 0.3 0.432 0.800 0.200 0.774 0.226 0.881 0.019
30 taxa 10 0.3 0.418 0.800 0.200 0.795 0.205 0.934 0.008
40 taxa 10 0.3 0.406 0.800 0.200 0.811 0.188 0.928 0.011
50 taxa 10 0.3 0.403 0.800 0.200 0.809 0.191 0.936 0.007
20 taxa 10 0.3 0.374 0.950 0.050 0.952 0.046 0.670 0.025
30 taxa 10 0.3 0.400 0.950 0.050 0.963 0.037 0.422 0.010
40 taxa 10 0.3 0.414 0.950 0.050 0.947 0.050 0.786 0.015
50 taxa 10 0.3 0.367 0.950 0.050 0.947 0.053 0.847 0.005
20 taxa 10 0.3 0.430 0.995 0.005 0.987 0.006 0.172 0.000
30 taxa 10 0.3 0.427 0.995 0.005 0.992 0.001 0.000 0.000
40 taxa 10 0.3 0.391 0.995 0.005 0.994 0.003 0.105 0.000
50 taxa 10 0.3 0.399 0.995 0.005 0.995 0.005 0.097 0.000
20 taxa 10 0.5 0.515 0.800 0.200 0.815 0.185 0.856 0.014
30 taxa 10 0.5 0.549 0.800 0.200 0.805 0.194 0.902 0.009
40 taxa 10 0.5 0.596 0.800 0.200 0.800 0.200 0.952 0.004
50 taxa 10 0.5 0.540 0.800 0.200 0.803 0.197 0.978 0.012
20 taxa 10 0.5 0.487 0.950 0.050 0.948 0.052 0.545 0.007
30 taxa 10 0.5 0.507 0.950 0.050 0.960 0.040 0.658 0.006
40 taxa 10 0.5 0.624 0.950 0.050 0.952 0.048 0.762 0.011
50 taxa 10 0.5 0.625 0.950 0.050 0.953 0.047 0.836 0.043
20 taxa 10 0.5 0.605 0.995 0.005 0.995 0.005 0.115 0.000
30 taxa 10 0.5 0.751 0.995 0.005 0.972 0.028 0.421 0.200
40 taxa 10 0.5 0.676 0.995 0.005 0.990 0.000 0.000 0.000
50 taxa 10 0.5 0.584 0.995 0.005 0.995 0.000 0.000 0.000
20 taxa 10 1 1.206 0.800 0.200 0.794 0.206 0.855 0.012
30 taxa 10 1 1.018 0.800 0.200 0.780 0.218 0.963 0.014
40 taxa 10 1 1.141 0.800 0.200 0.837 0.163 0.931 0.007
50 taxa 10 1 0.774 0.800 0.200 0.794 0.205 0.969 0.009
20 taxa 10 1 1.019 0.950 0.050 0.962 0.038 0.445 0.017
30 taxa 10 1 0.768 0.950 0.050 0.940 0.059 0.753 0.041
40 taxa 10 1 0.998 0.950 0.050 0.952 0.048 0.878 0.033
50 taxa 10 1 0.859 0.950 0.050 0.942 0.055 0.833 0.030
20 taxa 10 1 0.793 0.995 0.005 0.990 0.007 0.042 0.000
30 taxa 10 1 0.859 0.995 0.005 0.996 0.003 0.045 0.000
40 taxa 10 1 1.421 0.995 0.005 0.994 0.003 0.000 0.000
50 taxa 10 1 1.300 0.995 0.005 0.994 0.006 0.150 0.000

NOTE.—Posterior means of a, p, and q are denoted by an overline. The proportion of damaged sites correctly identified (the power) when a posterior probability of 0.95

is used as the criteria for accepting an alternative nucleotide at an aDNA site is given in column 9. The false-positive rate (type I error) was calculated as the proportion of

sites incorrectly identified as damaged (column 10). a is the scale parameter of the gamma distribution used to model among-site rate variation, p is the probability that a site

does not undergo degradation, q is the rate of type I and II transitions, and z is the rate of transversions.
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each of the data sets. Multiple chains were run for the same
data set with different initial values to assess convergence.

The results of the runs are summarized in tables 4 and
5. The degree of degraded sites in these data sets thus ap-
pears very low as evidenced by a q parameter with posterior
mean q , 10�3. The posterior means across independent
MCMC runs are highly consistent indicating convergence,
with the exception of run 9 for data set 2, which appears to
have an inflated value for z. A small number of sites showed
a weak signal of degradation with posterior probability (av-
eraged across runs) for an alternative nucleotide present in
the aDNA sequences �0.95.

Previous analysis of the HVR-I region from Etruscan
remains have found several sites to be prone to postmortem
damage or to show high substitution rates (Vernesi et al.
2004). The posterior mean and highest posterior density in-
terval (averaged over runs) of the substitution rate at these
sites are shown in table 5. Among the 24 sites, only sites
270 and 261 have posterior mean above 1 (the site rates
average set by the prior), whereas the others have a posterior
mean substitution rate that is lower than the average rate at
the remaining sites in the sequence. Note that all rates are
relative with the mean rate across all sites of the sequence
being equal to 1.

Analysis of Adélie Penguin and Horse aDNA

Two of the data sets analyzed by Ho et al. (2007) were
also analyzed using our method for purposes of compari-

son. The first data set analyzed is from the study of Lambert
et al. (2002) of 345 bp from the mtDNA control region (hy-
pervariable region I) of Adélie penguins. We analyzed 107
nonredundant sequences from a set of 379 contemporary
sequences (accession numbers AF474412–AF474791)
as well as 92 aDNA sequences (Genbank accession
numbers AF474887–AF474792). From the total of 107
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FIG. 2.—The correlation between the mean posterior rates obtained
from degraded data (þ) using BYPASSR-degr versus original data set
before including the errors (�) analyzed with BYPASSR is calculated for
simulated data having 20, 30, 40, and 50 sequences and generated with
a 5 0.5, p 5 0.95, and q 5 0.05 (data set 5 in table 1). Note that a is the
scale parameter of the gamma distribution used to model among-site rate
variation, p is the probability that a site does not undergo degradation, q is
the rate of type I and II transitions, and z is the rate of transversions.

FIG. 3.—The panels at left (A) show the correlation between the
mean posterior rates obtained from degraded data (þ) using BYPASSR-
degr versus BYPASSR (that ignores the presence of damaged sites). The
panels at right (B) show the comparison between the mean posterior
branch lengths in the same situations as in panels (A). The simulated data
sets have 20, 30, 40, and 50 sequences (from top to bottom) and were
generated with a 5 0.5, p 5 0.95, and q 5 0.05 (data set 5 in table 1).
Note that a is the scale parameter of the gamma distribution used to
model among-site rate variation, p is the probability that a site does not
undergo degradation, q is the rate of type I and II transitions, and z is the
rate of transversions.
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contemporary þ 92 aDNA sequences, 2 smaller data sets
were created for the use in the analysis using the even
(set 1: 57 DNA þ 43 aDNA) and odd (set 2: 49 DNA þ
49 aDNA) sequence numbers. Sequences were aligned us-
ing ClustalW, and the tree was obtained using the HKY85
model with 8 categories for the gamma distribution of
among-site rate variation, as implemented in PAML (Yang
2007). In analyzing the first data set, 258 sites were used in
the analysis following the exclusion of 33 gaps. In the sec-
ond data set, 276 sites were used after the exclusion of 37
gaps. BYPASSR-degr was run on these data using 6 million
iterations of burn in and sampling. The mean posterior es-
timates of the degradation model parameters are shown in
table 6. There were no individual sites with a posterior prob-
ability of degradation greater than 0.95.

The second data set analyzed is from the study of Vila
et al. (1989) of 348 bp from the mtDNA control region. We
analyzed 33 contemporary sequences (Genbank accession
numbers AF326635–AF326667) and 12 aDNA sequences
(accession numbers AF326668–AF326679). Sequences
were aligned using ClustalW, and the tree was obtained us-
ing the HKY85 model with 8 categories for the gamma dis-
tribution of among-site rate variation, as implemented in

PAML (Yang 2007). In total, 345 sites were used in the
analysis after the exclusion of 3 gaps. BYPASSR-degr
was run on these data using 4 million iterations of burn

Table 2
Estimates for the Parameters of the Degradation Model When the Proportion aDNA:DNA is 1:1 or 1:3

Data Set Ancient True a a True p True q p q Power

50 taxa 25 0.3 0.39975 0.95 0.05 0.965 0.035 0.694
100 taxa 50 0.3 0.38168 0.95 0.05 0.948 0.052 0.869
150 taxa 75 0.3 0.35751 0.95 0.05 0.952 0.048 0.952
50 taxa 12 0.3 0.43013 0.95 0.05 0.965 0.035 0.885
100 taxa 25 0.3 0.39440 0.95 0.05 0.946 0.054 0.907
150 taxa 37 0.3 0.37811 0.95 0.05 0.947 0.053 0.947
50 taxa 25 0.3 0.37978 0.99 0.01 0.988 0.010 0.371
100 taxa 50 0.3 0.38837 0.99 0.01 0.992 0.008 0.474
150 taxa 75 0.3 0.37205 0.99 0.01 0.990 0.010 0.781
50 taxa 12 0.3 0.44079 0.99 0.01 0.991 0.009 0.569
100 taxa 25 0.3 0.38974 0.99 0.01 0.990 0.010 0.000
150 taxa 37 0.3 0.37990 0.99 0.01 0.990 0.010 0.759
50 taxa 25 0.5 0.63776 0.95 0.05 0.948 0.053 0.868
100 taxa 50 0.5 0.60178 0.95 0.05 0.949 0.051 0.922
150 taxa 75 0.5 0.50865 0.95 0.05 0.949 0.051 0.943
50 taxa 12 0.5 0.61272 0.95 0.05 0.944 0.055 0.843
100 taxa 25 0.5 0.45734 0.95 0.05 0.955 0.045 0.884
150 taxa 37 0.5 0.52972 0.95 0.05 0.947 0.053 0.941
50 taxa 25 0.5 0.53856 0.99 0.01 0.992 0.008 0.415
100 taxa 50 0.5 0.52636 0.99 0.01 0.991 0.009 0.516
150 taxa 75 0.5 0.50836 0.99 0.01 0.991 0.010 0.611
50 taxa 12 0.5 0.54508 0.99 0.01 0.992 0.007 0.268
100 taxa 25 0.5 0.52471 0.99 0.01 0.989 0.011 0.607
150 taxa 37 0.5 0.50773 0.99 0.01 0.991 0.009 0.671

NOTE.—Posterior mean of a, p, and q are marked with overline. The proportion of damaged sites correctly identified when a posterior probability of 0.95 is used as the

criteria for accepting an alternative nucleotide at an aDNA site (power) is given in column 9. Note that a is the scale parameter of the gamma distribution used to model

among-site rate variation, p is the probability that a site does not undergo degradation, q is the rate of type I and II transitions, and z is the rate of transversions.

Table 3
The Numbers of aDNA and Contemporary HVR-I Sequences
Analyzed for 6 Contemporary Populations Using BYPASSR-
degr

aDNA Basques Cornish Druz Saami Sards Tuscans Total

Set 1 27 15 11 6 11 13 14 97
Set 2 27 10 6 3 7 8 8 69

Table 4
Posterior Means with the Standard Deviations for the
Gamma Distribution Parameter a, Tree Length (TL), and
Degradation Model Parameters p, q, and z obtained from the
analysis of 27 Etruscan aDNA þ 70 Contemporary DNA
(upper part) and 27 aDNA þ 42 DNA (lower part)

Run a TL p q z

1 0.53 ± 0.10 0.42 ± 0.05 0.9968 ± 0.0 0.0032 0.0000
2 0.53 ± 0.09 0.47 ± 0.04 0.9997 ± 0.0 0.0002 0.0001
3 0.53 ± 0.09 0.47 ± 0.03 0.9998 ± 0.0 0.0002 0.0001
4 0.52 ± 0.09 0.43 ± 0.04 0.9953 ± 0.0 0.0047 0.0000
5 0.52 ± 0.09 0.47 ± 0.05 0.9992 ± 0.0 0.0008 0.0001
6 0.53 ± 0.09 0.49 ± 0.06 0.9992 ± 0.0 0.0005 0.0003
7 0.53 ± 0.09 0.44 ± 0.03 0.9994 ± 0.0 0.0006 0.0000
8 0.52 ± 0.09 0.52 ± 0.04 0.9993 ± 0.0 0.0005 0.0002
9 0.52 ± 0.09 0.49 ± 0.04 1.0000 ± 0.0 0.0000 0.0000
10 0.54 ± 0.10 0.41 ± 0.04 0.9989 ± 0.0 0.0001 0.0009
1 0.52 ± 0.10 0.38 ± 0.03 0.9999 ± 0.0 0.0001 0.0000
2 0.53 ± 0.11 0.31 ± 0.03 0.9975 ± 0.0 0.0012 0.0013
3 0.51 ± 0.10 0.37 ± 0.03 1.0000 ± 0.0 0.0000 0.0000
4 0.53 ± 0.11 0.32 ± 0.04 0.9977 ± 0.0 0.0022 0.0001
5 0.52 ± 0.11 0.39 ± 0.04 0.9993 ± 0.0 0.0006 0.0001
6 0.53 ± 0.11 0.35 ± 0.03 0.9982 ± 0.0 0.0012 0.0006
7 0.53 ± 0.11 0.35 ± 0.03 0.9998 ± 0.0 0.0000 0.0002
8 0.52 ± 0.10 0.36 ± 0.04 0.9996 ± 0.0 0.0001 0.0004
9 0.53 ± 0.11 0.34 ± 0.03 0.9813 ± 0.0 0.0000 0.0187
10 0.52 ± 0.11 0.34 ± 0.03 0.9977 ± 0.0 0.0023 0.0000

NOTE.—a is the scale parameter of the gamma distribution used to model

among-site rate variation, p is the probability that a site does not undergo

degradation, q is the rate of type I and II transitions, and z is the rate of

transversions.
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in and sampling. The mean posterior estimates of the deg-
radation model parameters are shown in table 7. There were
no individual sites with a posterior probability of degrada-
tion greater than 0.95.

Discussion

We have developed a novel approach to infer proper-
ties of the degradation process in aDNA and have incorpo-
rated this process in the context of a model with continuous
variation of substitution rates among sites. In the limited
analyses we have carried out using simulated data,
BYPASSR-degr, the implementation of the model pro-
posed by us performed very well in identifying the damaged
sites (even if there are many damaged sites spread across
several sequences) and obtaining reasonably precise esti-
mates of the other tree parameters (i.e., branch lengths,
site-specific rate, GTR model parameters, etc.). In general,
the type I error rate was very low, and the method was not
prone to spurious detection of nonexistent degradation er-
rors. By contrast, Ho et al. (2007) found that their method
was prone to false-positive degradation errors for at least
some of their simulation conditions. This difference in
the performance of the methods could be due to the use
of a more realistic model in our study, although further sim-
ulation analyses of the 2 methods are probably warranted.
The results of our simulation analyses suggest that efficient
recovery of the model parameters is possible when the num-
ber of aDNA sequences is sufficiently large for the model of
degradation to be well defined and the number of contem-
porary sequences sufficiently large that information about
the underlying substitution process is available. We have
applied the method to analyze a data set comprised of Etrus-
can aDNA and contemporary sequences. By choosing dif-
ferent sets of contemporary sequences in addition to the
aDNA sequences and by running multiple chains for each
data set, we were able to evaluate the performance of the
MCMC method in obtaining estimates of the parameters
of the degradation model. Our analysis revealed no signif-
icant signals of degradation in the Etruscan aDNA. The fact
that one of our runs analyzing the Etruscan data produced
a small but potentially misleading inflation of the parameter
z due to likely nonconvergence, emphasizes the importance
of conducting multiple independent runs when analyzing
a single data set using MCMC to confirm convergence.
We further applied the method to analyze contemporary

Table 5
Posterior Mean, Standard Deviation, and Highest Posterior
Density Interval of the Substitution Rate, r, at Sites of the
Etruscan Sequences

Site r 95% HPD

66 0.64 ± 0.02 (0–2.53)
69 0.83 ± 0.32 (0–2.58)
95 0.64 ± 0.02 (0–2.53)
98 0.48 ± 0.05 (0–1.89)

126 0.83 ± 0.02 (0–3.17)
129 0.48 ± 0.05 (0–1.89)
186 0.83 ± 0.32 (0–2.61)
189 0.83 ± 0.02 (0–3.17)
193 0.83 ± 0.02 (0–3.17)
219 0.58 ± 0.05 (0–2.25)
223 0.83 ± 0.02 (0–3.17)
228 0.58 ± 0.05 (0–2.25)
229 0.83 ± 0.02 (0–3.17)
256 0.58 ± 0.05 (0– 2.25)
261 1.68 ± 0.80 (0–5.02)
270 2.34 ± 0.08 (0–6.95)
274 0.83 ± 0.31 (0–2.61)
278 0.58 ± 0.05 (0–2.25)
291 0.83 ± 0.02 (0–3.17)
311 0.48 ± 0.05 (0–1.89)
319 0.48 ± 0.05 (0–1.89)
327 0.83 ± 0.02 (0–3.17)
334 0.48 ± 0.05 (0–1.89)
356 0.58 ± 0.05 (0–2.25)

NOTE.—The values are averaged over the 20 runs.

Table 6
Posterior Means with the Standard Deviations for the
Gamma Distribution Parameter a, Tree Length (TL), and
Degradation Model Parameters p, q, and z Obtained from
the Analysis of the Adélie Penguins Data Set 1 at Top (57
DNA þ 43 aDNA) and Data Set 2 at Bottom (49 DNA þ 49
aDNA) (10 independent runs each)

Run a TL p q z

1 0.44 ± 0.08 0.49 ± 0.05 0.9980 ± 0.00 0.0009 0.0010
2 0.45 ± 0.07 0.50 ± 0.05 0.9973 ± 0.00 0.0026 0.0001
3 0.43 ± 0.07 0.51 ± 0.05 0.9997 ± 0.00 0.0001 0.0002
4 0.44 ± 0.07 0.52 ± 0.04 0.9996 ± 0.00 0.0004 0.0001
5 0.46 ± 0.07 0.48 ± 0.05 0.9966 ± 0.00 0.0033 0.0000
6 0.43 ± 0.07 0.48 ± 0.05 0.9996 ± 0.00 0.0003 0.0001
7 0.44 ± 0.08 0.51 ± 0.05 0.9992 ± 0.00 0.0008 0.0000
8 0.47 ± 0.09 0.45 ± 0.04 0.9944 ± 0.00 0.0056 0.0000
9 0.42 ± 0.08 0.47 ± 0.05 0.9982 ± 0.00 0.0015 0.0002
10 0.44 ± 0.07 0.46 ± 0.05 0.9961 ± 0.00 0.0039 0.0000
1 0.42 ± 0.06 0.55 ± 0.06 0.9985 ± 0.00 0.0014 0.0000
2 0.42 ± 0.06 0.54 ± 0.06 0.9993 ± 0.00 0.0006 0.0001
3 0.42 ± 0.06 0.55 ± 0.07 0.9988 ± 0.00 0.0012 0.0000
4 0.42 ± 0.06 0.55 ± 0.06 0.9989 ± 0.00 0.0011 0.0000
5 0.43 ± 0.07 0.55 ± 0.06 0.9991 ± 0.00 0.0004 0.0005
6 0.43 ± 0.07 0.55 ± 0.06 0.9999 ± 0.00 0.0001 0.0000
7 0.41 ± 0.07 0.57 ± 0.07 0.9993 ± 0.00 0.0006 0.0001
8 0.43 ± 0.07 0.54 ± 0.06 0.9978 ± 0.00 0.0022 0.0000
9 0.43 ± 0.07 0.55 ± 0.06 0.9986 ± 0.00 0.0014 0.0000
10 0.42 ± 0.06 0.53 ± 0.07 0.9985 ± 0.00 0.0012 0.0003

NOTE.—a is the scale parameter of the gamma distribution used to model

among-site rate variation, p is the probability that a site does not undergo

degradation, q is the rate of type I and II transitions, and z is the rate of

transversions.

Table 7
Posterior Means with the Standard Deviations for the
Gamma Distribution Parameter a, Tree Length (TL), and
Degradation Model Parameters p, q, and z Obtained from
the Analysis of 12 Horse aDNA þ 33 Contemporary DNA (10
independent runs)

Run a TL p q z

1 0.40 ± 0.06 0.37 ± 0.05 0.9956 ± 0.0 0.0034 0.0010
2 0.39 ± 0.05 0.43 ± 0.06 0.9967 ± 0.0 0.0007 0.0026
3 0.42 ± 0.06 0.37 ± 0.04 0.9974 ± 0.0 0.0000 0.0026
4 0.42 ± 0.06 0.37 ± 0.04 0.9988 ± 0.0 0.0000 0.0012
5 0.37 ± 0.04 0.47 ± 0.07 0.9949 ± 0.0 0.0001 0.0050
6 0.39 ± 0.06 0.37 ± 0.05 0.9892 ± 0.0 0.0108 0.0000
7 0.39 ± 0.06 0.38 ± 0.05 0.9976 ± 0.0 0.0002 0.0022
8 0.40 ± 0.05 0.37 ± 0.04 0.9945 ± 0.0 0.0015 0.0040
9 0.41 ± 0.06 0.36 ± 0.05 0.9981 ± 0.0 0.0013 0.0006

10 0.41 ± 0.06 0.37 ± 0.04 0.9992 ± 0.0 0.0004 0.0005

NOTE.—a is the scale parameter of the gamma distribution used to model

among-site rate variation, p is the probability that a site does not undergo

degradation, q is the rate of type I and II transitions, and z is the rate of

transversions.
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and ancient mtDNA sequences from Adélie penguins and
horses and found no significant evidence for degradation
errors in either data set. In conclusion, with sufficient num-
bers of sequences, it appears possible to identify sites in
aDNA that have experienced degradation errors using
the method presented in this paper. However, the 3 data sets
we analyzed all suggest extremely low rates of degradation-
induced nucleotide substitutions, suggesting that degrada-
tion may be less of a problem for aDNA sequence data than
was previously supposed.

Acknowledgments

We thank Giorgio Bertorelle for bringing the problem
of miscoding lesions in aDNA to our attention. Support for
this research was provided by a grant from the Canadian
Institutes of Health Research (MOP 44064) to B.H.R.

Literature Cited

Bandelt HJ, Forster P, Rohl A. 1999. Median-joining networks for
inferring intraspecific phylogenies. Mol Biol Evol. 16:37–48.

Binladen J, Wiuf C, Gilbert M, Bunce M, et al. (11 co-authors).
2006. Assessing the fidelity of ancient DNA sequences
amplified from nuclear genes. Genetics. 172:733–741.

Cooper A, Poinar H. 2000. Ancient DNA: do it right or not at all.
Science. 289:1139.

Felsenstein J. 1981. Evolutionary trees from DNA sequences:
a maximum likelihood approach. J Mol Evol. 17:368–376.

Gelman A, Carlin J, Stern H, Rubin D. 2004. Bayesian data
analysis. Boca Raton (FL): Chapman & Hall/CRC.

Gilbert M, Binladen J, Miller W, Wiuf C, Willerslev E, Poinar H,
Carlson JE, Leebens-Mack JH, Schuster SC. 2007. Recharac-
terization of ancient DNA miscoding lesions: insights in the
era of sequencing-by-synthesis. Nucleic Acids Res. 35:1–10.

Hansen A, Willerslev E, Wiuf C, Mourier T, Arctander P. 2001.
Statistical evidence for miscoding lesions in ancient DNA
templates. Mol Biol Evol. 18:262–265.

Helgason A, Palsson S, Lalueza-Fox C, Ghosh S. (10 co-authors).
2007. A statistical approach to identify ancient template DNA.
J Mol Evol. 65:92–102.

Ho S, Heupink T, Rambaut A, Shapiro B. 2007. Bayesian
estimation of sequence damage in ancient DNA. Mol Biol
Evol. 24:1416–1422.

Hoelzel AR. 2005. Ancient genomes. Genome Biol. 6:239.
Hofreiter M, Jaenicke V, Serre D, Haeseler A, Pääbo S. 2001.
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