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As more human genomic data become available, fine-scale recom-
bination rate variation can be inferred on a genome-wide scale.
Current statistical methods to infer recombination rates that can
be applied to moderate, or large, genomic regions are limited
to approximated likelihoods. Here, we develop a Bayesian full-
likelihood method using Markov Chain Monte Carlo (MCMC) to
estimate background recombination rates and hotspots. The prob-
ability model is inspired by the observed patterns of recombination
at several genomic regions analyzed in sperm-typing studies.
Posterior probabilities and Bayes factors of recombination hot-
spots along chromosomes are inferred. For moderate-size genomic
regions (e.g., with <100 SNPs), the full-likelihood method is used.
Larger regions are split into subintervals (typically each having
between 20 and 50 markers). The likelihood is approximated based
on the genealogies for each subinterval. The background recom-
bination rates, hotspots, and parameters are evaluated by using a
parallel computing approach and assuming shared parameters
across the subintervals. Simulation analyses show that our method
can accurately estimate the variation in recombination rates across
genomic regions. In particular, clusters of hotspots can be distin-
guished even though weaker hotspots are present. The method is
applied to SNP data from the HLA region, the MS32, and chromo-
some 19.
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Describing fine-scale recombination rate variation and the
distribution of recombination hotspots across chromosomes

are important goals in population genetics. Recombination is
one of the fundamental evolutionary forces affecting patterns of
polymorphism variation across genomes. The distribution of
recombination rates and hotspots helps to reveal the molecular
basis of meiotic cross-overs and is a crucial factor in association
study designs because of its effect on the pattern of linkage
disequilibrium in human genomes (1). Traditional linkage data
from pedigrees typically do not provide estimates of recombi-
nation on a fine scale because of the limited number of meioses
(2, 3). Sperm-typing analyses can experimentally provide esti-
mates of recombination rates but are laborious and expensive, so
only a few regions of the human genome have been studied. In
addition, only recombination rates in males can be revealed from
these studies (reviewed in ref. 4). Statistical inferences of
recombination rates based on population genetic data represent
a major approach to obtain an overall picture of fine-scale
recombination rates and hotspot locations in the human genome,
especially at present, with more population genomic data be-
come available daily [e.g., data generated by the HapMap project
(5), etc.].

Both sperm-typing analyses and statistical inferences based on
population genetic data (typically SNPs) reveal similar patterns
of fine-scale recombination rates across chromosomes. These
studies suggest that recombination rates vary significantly over
genomic regions, and most recombination tends to occur in
particular regions of chromosomes (with interval sizes of

�1–2 kb) known as recombination ‘‘hotspots,’’ whereas in other
‘‘background’’ regions, many fewer recombinations occur (4, 6).

A number of statistical methods have been developed to
estimate recombination rates by using population genetic data,
including those using summary statistics, full likelihoods, and
approximated likelihoods (reviewed in refs. 7 and 8). Full-
likelihood methods use all information contained in the data
and, in principle, should provide more accurate estimates.
However, because full-likelihood methods based on the Ances-
tral Recombination Graph (ARG) (9, 10) involve integrating a
large number of variable dimension genealogies, it has been
challenging to develop efficient methods based on full likeli-
hoods that are applicable to large-scale data (10–13). Several
methods based on approximate likelihoods have therefore been
developed (14–16) and applied to human genomic data (17–19).
We recently developed a full-likelihood Bayesian Markov Chain
Monte Carlo (MCMC) method for estimating fine-scale recom-
bination rates (20). In our method, genealogies underlying a
sampling of chromosomes are effectively modeled by using
marginal individual SNP genealogies related through an ARG.
Simulation studies showed that our full-likelihood method per-
formed well under different simulation scenarios and can be
applied to small-to-moderate-size chromosomal intervals (e.g.,
with �100 SNPs).

Several methods for detecting recombination hotspots have
also been developed that search for regions of accelerated
recombination rates by comparison with surrounding regions or
with overall background rates (16, 18, 21, 22). Auton and
McVean (24) recently incorporated a model of hotspots and
background recombination into the LDhat package to simulta-
neously estimate fine-scale recombination rates and detect re-
combination hotspots. Our method differs from Auton and
McVean’s composite likelihood method in several ways. Most
importantly, for moderate-size genomic regions (e.g., �100
SNPs), the posterior probability of recombination rates is ob-
tained by a full-likelihood method. If genomic regions are larger,
they are divided into n-marker subregions (typically, an appro-
priate choice for n is between 20 and 50). The likelihood is then
calculated conditional on the genealogies for each subregion,
and parameters are evaluated jointly across all subregions.

Here, we present a model of recombination rates and hotspots
whose design is based on the observed distribution of recombi-
nation hotspots at several genomic regions obtained from sperm-
typing studies (4, 6). The background rates between SNPs
are assumed to be independently distributed following a �-
distribution. Piecewise estimators of recombination rate change
have been developed that accommodate recombination hotspots
(18, 23). Auton and McVean (24) presented a model in which
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recombination hotspots are uniformly scattered over the region
being analyzed.

In our hotspot model, a 2-parameter Markov process is used
to describe the distribution of the intervals between hotspots and
the duration of hotspots. Both duration of hotspots and the
distances between hotspots are exponentially distributed. One
feature of the distribution of recombination hotspots that has
been revealed by sperm typing analyses is that hotspots are
sometimes clustered. The advantage of using an exponential
distribution to describe the distances between hotspots is that the
mode of the distribution is 0, and the variance is large. Thus,
scenarios in which hotspots are far apart and in which they are
clustered can be accommodated. An example of a pattern of
recombination hotspots generated by using the model is given in
Fig. 1. The recombination rates across chromosomal regions are
a combination of the 2 independent processes (the summation of
the rates from the background rate and the hotspots rates).

A reversible jump MCMC scheme is used to estimate back-
ground recombination rate and hotspots by using a population
sample of SNPs from regions of the genome (25). The position
and intensity of hotspots, background recombination rates, and
other parameters are sampled from the Markov chains. The
chromosomal intervals are divided into bins (e.g., with size 100
bp) for estimating the posterior probability and the Bayes factor
(BF) that each interval contains a hotspot and the average
intensity of the hotspot in each interval. To identify hotspots, a
hotspot is defined by 2 BF thresholds: HT1 and HT2. If BF
(hotspot at location i) � HT1, the local mode is used to estimate
the modal BF of the hotspot, and the hotspot extends until BF
(hotspot at location j) � HT2. The hotspot is then inferred to be
on the interval (i, j). Parameter HT1 represents the criterion for
detecting hotspots. Larger HT1 implies higher confidence that
the identified hotspots are true. Parameter HT2 determines the
boundaries, and thus the width, of an estimated hotspot condi-
tional on HT1. The power and type I error rates can be adjusted
by modifying values of HT1 and HT2.

Results
We examined the performance of our method by applying it to
both simulated data and human population genetic data. Pop-
ulation genetic datasets spanning the HLA (26) and MS32 (27)
regions that have been previously studied by sperm cross-over
analysis were analyzed by our method and compared with
previous results. The method was also applied to a SNP dataset
across human chromosome 19 sampled from the African-
American population (28).

Simulation Studies. To evaluate the statistical performance of the
method, we used the msHOT program (29, 30) to simulate 3 sets
of data. Common parameters used in all simulations include a
sample size of 50 chromosomes, a population size (Ne) equal to
104, a mutation rate per site per generation (�) equal to 10�8, a
background recombination rate of 0.15 cM/Mb (� � 0.06/kb,
given Ne � 104), and a chromosomal interval of size 30 kb. Only
sites with minor allele frequencies (MAF) �0.05 were retained
and used in the analyses.

We first examined the performance of the method by consid-
ering hotspots with 2 different intensities: � � 40/kb (for dataset
S1) and � � 10/kb (for dataset S2), representing a relatively
strong and a weaker recombination hotspot. For all 3 datasets,
the location of the hotspots is assumed to be the same (at a
position between 15 and 16.5 kb from the left of the interval).
The average [minimum, maximum] number of SNPs for S1 and
S2 are 34.58 [14, 73] and 34.22 [12, 64], respectively.

The BF of recombination hotspot locations and other param-
eters of the model, obtained by using the program IR, were
reported. Different hotspot threshold values, HT1 and HT2, were
considered to examine how the false-positive rate, power, and
the estimated hotspot intensity and width change. Here, a
hotspot is counted as correct when the estimated hotspots
overlapped with a true hotspot; otherwise, it is counted as
incorrect. The false-positive rate is the number of incorrect
hotspots over the number of intervals examined, and the power
is the percentage of successfully identified hotspots over the
number of true hotspots.

As expected, both the power and the false-positive rates
increase as HT1 decreases [see supporting information (SI) Fig.
S1 A and B]. The width of the estimated hotspots is determined
by HT2 given HT1. In general, HT2 can be assumed to be 2.5, and
the estimated widths are approximately consistent for different
HT1 values (Fig. S1C). The results assuming HT1 � 5 and HT2 �
2.5 are summarized in Table 1. When a hotspot is strong, the
estimated intensity tends to be underestimated, because the
genealogical trees are independent due to the large number of
recombinations, as was pointed out by other authors (24).

The second simulation study aimed to examine the ability of
the method to identify clustered hotspots. A sperm-typing
analysis of the HLA region (15) revealed 2 clusters of hotspots:
DNA1-3 and DMB1-2. The distance between hotspot centers is
4.01 kb for DNA1 and DNA2, 7.97 kb for DNA2 and DNA3, and
3.25 kb for hotspots DMB1 and DMB2. In our simulation study,
we assumed the centers of the 2 recombination hotspots are 5 kb
apart, with one hotspot locating between 11.75 and 13.25 and the
other between 16.75 and 18.25 kb. As was revealed by the
sperm-typing analysis, weaker hotspots can exist with stronger
hotspots within clusters. In the simulation study, we assumed the
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Fig. 1. An example of recombination hotspots simulated by using the
2-parameter Markov process model.

Table 1. Summary of the statistical performance of the IR
program in the simulation study

Parameter Statistical criteria

Dataset

S1 S2

Hotspot False positive 5 of 100 4 of 100
Power 0.92 0.74
Average width 1.83 1.58
Average intensity 12.70 9.56
MSE of intensity 781.02 28.86

Background rate Average 0.094 0.127
MSE 0.005 0.014
Coverage 0.95 0.92
Average with of 95% CS 0.177 0.242

Hotspots thresholds HT1 � 5 and HT2 � 2.5 were used.
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hotspot on the left was weak with � � 6 (H1) and the other
hotspot had a moderate intensity with � � 30 (H2). Fifty replicate
datasets were simulated (dataset S3), and the average [minimum,
maximum] number of SNPs was 35.36 [15, 66]. If assuming
HT1 � 5 and HT2 � 2.5, the false-positive rate was 2/50 and the
average power for both hotspots was 0.67 (0.5 for H1 and 0.84 for
H2). Of 50 intervals, there were 21 intervals for which both
hotspots were identified, 4 intervals for which only H1 was
identified, 21 intervals for which only H2 was identified, and 4
intervals for which no hotspots were identified. In all cases, none
of the estimated hotspots span both H1 and H2, indicating that
the method can discriminate between single hotspots and
clusters.

The third simulation study examined the performance of the
method when the approximated-likelihood method was used by
splitting larger intervals into n-SNP subintervals. Of the 250
simulated samples from the above 2 simulation studies, samples
that contain �40 SNPs were used in the third simulation study
(77 in total). The intervals were broken into 2 subintervals with
an approximately equal number of SNPs for each interval. The
likelihood was approximated by multiplying likelihoods from
subintervals with parameters shared across the entire interval.
Results are listed in Table 2. The estimates are comparable
between the 2 methods, even though for 14 of 77 intervals, the
true hotspot locations were split across 2 subintervals.

Analysis of HLA and MS32 Regions. We applied our method to 2
datasets from the HLA and MS32 regions that have been
previously studied by sperm typing (26, 27). The HLA dataset
consists of 274 SNPs distributed across 0.216 Mb, sampled from
50 unrelated individuals. Six hotspots were revealed in the sperm
typing study (26). The MS32 dataset consists of 206 SNPs
sampled from 80 individuals and distributed across 0.206 Mb.
Both regions have been previously analyzed by using coalescent
methods for the analysis of genotypes (18, 24, 27).

For our analysis, the region was divided into subregions, each
with 20 markers. The posterior distribution of recombination
hotspots and background rates was inferred across the entire
region. Only the locations of recombination hotspots were
compared. The intensities of hotspots predicted by using the 2
approaches were not expected to be the same, because the
hotspot intensities inferred by using population genetic data are
a product of � � 4Nec and Ne likely varies across chromosomal
regions due to selection. Moreover, population genetic rates are
average rates over females and males. The BF of recombination
hotspots across the 2 regions is shown in Fig. 2.

The hotspot locations estimated by using our method are, in
general, consistent with those obtained from sperm cross-over
analysis. The hotspots that were independently discovered by
sperm-typing analysis also had high BFs in our population

genetic analyses. Only hotspot NID3 in the MS32 region showed
a lower BF.

Analysis of Human Chromosome 19. We applied our method to a
human variation dataset for chromosome 19 (28). The dataset
consists of 23 African-American individuals. In total, there are
18,406 SNPs on chromosome 19 from the sample. The whole

Table 2. Comparison of the performances in the simulation study using the full likelihood and the approximated
likelihood

Likelihood Dataset False positive Power

Hotspot

Average width Average intensity MSE of intensity

Full S1 0 of 31 1 1.77 11.42 852.62
S2 0 of 30 0.83 1.56 8.11 14.07
S3* 1 of 16 (0.56, 0.94) (1.72, 1.53) (5.18, 10.73) (5.77, 390.28)

Approximate S1 0 of 31 1 1.56 13.48 726.74
S2 2 of 30 0.77 1.40 10.31 24.44
S3* 0 of 16 (0.44, 1) (1.79, 1.68) (10.73, 12.57) (52.13, 325.60)

Hotspots thresholds HT1 � 5 and HT2 � 2.5 were used.
*For 2 hotspots cases, except false positive, all values are given for the first and the second hotspots.
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Fig. 2. Bayes factor of a hotspot inferred by the IR program as a function of
location for HLA (A) region and MS32 (B) region. Location of the center of a
hotspot previously inferred by sperm typing is indicated by ‘‘�’’ on the
horizontal axis.
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chromosome was divided into 92 intervals that were analyzed
separately. There are 200 markers on each interval for the first
91 intervals and 206 markers for the last interval. Each interval
was split into subintervals with 20 markers (26 markers for the
last segment of the last interval) in a parallel computation
assuming shared parameters across the subintervals. Hotspots
and background recombination rates were estimated for each
interval. Figs. 3 and 4 show the BFs of recombination hotspots
and the expected background recombination rates across chro-
mosome 19 estimated by using our method. There is strong
evidence for recombination hotspots in at least 10 locations on
each chromosome arm. Comparing the hotspots locations with
those inferred previously from the HapMap data, the majority
appear to overlap (Table S1).

Discussion
In this article, we present a model of background recombination
rates and hotspots to describe the changes of fine-scale recom-
bination rates over genomes. It is an extension of our recently
developed full-likelihood method for estimating recombination
rates by using population genetic data. Full-likelihood methods

use all information in the data and should provide more accurate
estimates and have higher power to detect recombination hot-
spots, but the disadvantage of such methods is that they are
computationally intensive. Our full-likelihood method effi-
ciently models the ancestral genealogy of a sample by using
marker ancestry vectors to avoid modeling nonancestral lin-
eages, which not only add a computational burden but can cause
convergence problems as well. Currently, the full-likelihood
method can be applied to moderate-size chromosomal intervals.
For larger intervals or whole genomes, an approximation to the
full-likelihood is used that divides an entire region, or chromo-
some, into subregions with the likelihood approximated by using
the products of likelihoods for genealogies on each subregion but
with model parameters shared across the entire region.

The results of our analyses suggest that it is possible to
accurately infer recombination hotspot locations and intensities
across chromosomes. In particular, our method can accurately
distinguish clustered hotspots, even though weaker hotspots may
be present. By choosing different criteria for identifying hot-
spots, the power and the false-positive rate changes accordingly.
In general, it should be profitable to study those hotspots with
high BFs at the molecular level; the false-positive rates are
extremely low in these cases. Other parameters in the recombi-
nation-rate model might also be interesting, such as how the
expected distances between hotspots and the background re-
combination rates change over the genome. In addition, vari-
ables and parameters of the ARG model may be of interest and
can be estimated by sampling from the Markov chains. Such
parameters include the posterior probabilities of genealogies at
each SNP site and the distribution of recombination breakpoints
over genomic regions.

The program InferRho (IR) and the simulated data in both
msHOT and IR formats can be obtained from http://rannala.org,
or by contacting Y.W.

Materials and Methods
Bayesian Inference of Fine-Scale Recombination Rates. Let � be a vector of
parameters, including � � 4Ne� and � � 4Nec, where Ne is the effective
population size, � is the site-specific mutation rate per generation, and c is the
recombination rate per generation in cM/Mb. Given GS, the genealogical trees
(��) for each marker position are then obtained. The posterior distribution of ��,

f	�� �X
 �
1

f	X
 � f	X��� � GS, �
f	GS��� 
f	�� 
f	�
dGSd� , [1]

is numerically evaluated by MCMC. In the Metropolis–Hastings (MH) algo-
rithm, proposed changes include modifying the SNP genealogy by changing a
local topology or by adding (or removing) a pair of recombination and
coalescent nodes, modifying ancestral alleles, modifying haplotypes (if the
phase of the data are unknown), modifying alleles at sites with missing alleles
in the sample, and modifying the parameters � and �.

Background Recombination Rates. The background recombination rates be-
tween SNPs are assumed to follow a �-distribution with shape parameter a�*

and scale parameter s�*. In the analyses, s�* is fixed, and a�* is estimated in the
MCMC.

Recombination Hotspots. It is assumed that the distribution of recombination
hotspots along chromosomes follows a Markov process. Hotspots arise with
instantaneous rate �1 and revert with instantaneous rate �2. The waiting
distance until the occurrence of a hotspot is therefore exponentially distrib-
uted with parameter �1, and the waiting distance until the loss of a hotspot is
exponentially distributed with parameter �2. The values of 1/�1 and 1/�2

represent the average distance between hotspots and the average duration of
a hotspot, respectively.

Three variables are associated with each hotspot (H), denoted by X1, X2, and
Z, and represent the starting location, the ending location, and the strength
of the hotspot. Variable Z is assumed to be log-normally distributed with
parameters �Z and 	Z. Considering s hotspots across a chromosomal region,
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Fig. 3. Bayes factor of a hotspot (A) and the posterior mean (solid lines) and
95% credible intervals (dotted lines) of the expected background recombina-
tion rates (B) as a function of location across chromosome 19 p-arm estimated
by IR in 23 African Americans.
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Fig. 4. Bayes factor of a hotspot (A) and the posterior mean (solid lines) and
95% credible intervals (dotted lines) of the expected background recombina-
tion rates (B) as a function of location across chromosome 19 q-arm estimated
by IR in 23 African Americans.
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the distribution of the ith recombination hotspot given the adjacent hotspot
on its left is

f	Hi�Hi�1,�1, �2, �Z, 	Z
 � f	Hi3 X1�Hi�13 X2, �1


f	Hi3 X2�Hi3 X1, �2
f	Hi3 Z ��Z,	Z
 , [2]

where i � {1, …, s � 1}. If i � 0, replace Hi�13 X2 with the location of the first
site of the interval in the above equation. If i � s � 1, and Hi3 X2 is equal to
the right bound of the interval (or the last marker on the interval), then f(Hi3
X2 Hi 3 X1, �2) � exp[��2(Hi 3 X2 � Hi 3 X1)] to represent the fact that
the end of a hotspot exceeds the right bound of the chromosomal interval. The
joint density of s hotspots (H� ) on the chromosomal interval is given by the
product of the above equation over s hotspots multiplied by the density on
parameters �1, �2, �Z, and 	Z.

Given ��* and H� across the chromosomal interval, the probability distribu-
tion of the SNP genealogy can be obtained. The posterior distribution de-
scribed in Eq. 1 becomes

f	��*, H� , �1, a�*�X
 �
1

f	X
 � f	X��� � GS,�
f	GS��� *, H� 


f	�� * �a�*, s�*
f	a�*
f	H� ��1, �2, �Z, 	Z
f	�1
f	�
dGSd� . [3]

Note that 4 parameters in the model are fixed to avoid parameter identifi-
ability issues as well as to incorporate information from other independent
studies. Parameter �2 is fixed to be 1,000, which corresponds to 0.001 Mb as the

average width of hotspots. Other parameters are chosen to have a less
informative prior, such that �Z � 9 and 	Z � 1.5, so the 95% interval for the
strength of a hotspot is [428.40, 153,268.41] per Mb. Because background
recombination rates are intended to describe low rates with relatively small
variance, parameter s�* is fixed to be 50. For example, if a�* � 2, the 95%
interval of the prior distribution on background rate is [12.11, 278.58] per Mb.
If the size of a chromosomal interval is large, the interval is divided into K
subintervals, denoted by X � {Xi}, to improve computational efficiency. The
SNP genealogies underlying subintervals are treated as independent but
allowing parameters to be jointly estimated across an entire interval. The
independence assumption can be relaxed if needed, and the sizes of subin-
tervals can be adjusted depending on the available computing resources. In
this case, the posterior distribution is approximated by

f	��*, H� , �1, ��*�X
 �
1

f	X
 � �
i�1

K

f	Xi��� i � GSi
, �
f	GSi

��� *, H� 
f	�� * �a�*, s�*
f	a�*


f	H� ��1, �2, �Z, 	Z
f	�1
f	�
dG� Sd�� *dH� d� . [4]

For additional information see SI Text, Figs. S2 and S3, and Table S2.
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