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Forces that determine the allele frequencies in natural

populations include genetic drift, natural selection,

migration and mutation. A balance of opposing forces

can, in some cases, cause allele frequencies to approach a

stationary distribution over time. The form of this distri-

bution is not influenced by initial allele frequencies, but

instead is determined by the relative magnitudes of dif-

ferent evolutionary forces. Statistical distributions are

presented for the stationary allele frequencies under

several simple population genetic models (including the k

alleles symmetricalmutationmodelandtheWright island

model of migration). In addition, the sampling distri-

bution of allele counts under these models are described.

The latter is useful when using genetic marker data to

estimate population parameters. A population is at gen-

etic equilibrium if evolutionary forces have persisted long

enough for a population to have reached the stationary

distribution, this is not often the case in nature.

Introduction

Frequencies of alleles at a genetic locus in a population are
the outcome of a complex interplay among several forces
including genetic drift, natural selection, gene flow and
mutation. Forces such as selection,mutation and gene flow
impose systematic pressures, causing allele frequencies to
change in a particular direction. Genetic drift causes ran-
dom (directionless) changes of allele frequency and con-
tributes to the variation of allele frequencies observed
within a single populationover time, aswell as the variation
in allele frequencies among populations. See also: Genetic
Drift in Human Populations; Migration
Allele frequency change in finite populations is a sto-

chastic process. Consequently, the allele frequency in a
population at some future generation cannot be exactly
predicted, even if current allele frequencies, and the

magnitudes of evolutionary forces causing allele frequency
changes, are known. At best, probabilities can be assigned
to each possible future combination of allele frequencies on
the basis of a stochastic model of allele frequency change.
The probability distribution of future population allele
frequencies, in general, depends on the number of gener-
ations of reproduction and the initial allele frequencies, as
well as the relative magnitudes of various evolutionary
pressures influencing allele frequencies.
In special cases, when opposing forces of evolutionary

change balance one another, a ‘stationary’ probability
distribution of allele frequencies may exist. Over time, the
allele frequencies in the population invariably approach
this distribution, regardless of the initial frequencies of
alleles in the population. Once this distribution is achieved,
the population remains in this state so long as evolutionary
pressures do not change. The stationary allele frequency
distribution has long been of interest to population gen-
eticists because it is informative about the long-term out-
comes of evolutionary forces and is thought to be of
relevance in interpreting gene frequencies in many (but not
all) natural populations.

Theoretical Background

Fisher–Wright model

Mathematicalmodels aimed at predicting population allele
frequency changes over timewere independently developed
byFisher (1930) andWright (1931). A fundamental model,
considered by both, was of a diploid population of N
individuals (2N alleles) with a random mating structure.
The so-called Fisher–Wright model assumes that each
allele produces a random number of offspring (with mean
one) in each generation (subject to the constraint that
population size remains constant). The generations are
discrete and nonoverlapping. The process of genetic drift is
intrinsic to the model. Other processes such as migration,
mutation and natural selection have been incorporated.
See also: Fisher, Ronald Aylmer; Wright, Sewall
Many results obtained by studying the Fisher–Wright

model also apply to organisms with more complex mating
systems, including humans. Consider a single-genetic locus
with two alleles, A and a. If no mutations occur and all
other factors, apart from genetic drift, can be neglected, the
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probability distribution of the number of copies of a at the
next generation, given that there are x copies of a in the
current generation, is a binomial (n, p) with parameters
p=x/2N and n=2N. The probability distribution of allele
frequencies at the next generation can be understood as the
frequency with which populations with particular com-
binations of allele frequencies would be observed if one
were to repeat a population mating experiment many
times, starting each experimentwith the samenumber,x, of
copies of a.

Continuous approximation

The frequency of an allele in a diploid population of sizeN
is an integer value that ranges from0 to 2N. To facilitate the
study of allele frequency evolution over many generations
under the Fisher–Wright model, Fisher (1930), Wright
(1931) and Kimura (1955) all made use of an approxi-
mation that treats allele frequency as continuous (real
valued) rather than discrete (integer valued). The relative
frequency of a is q=x/2N, where x is the number of copies
of a in the population. An increase, by one, of the number
of copies of a in the population increases the relative fre-
quency by dq=1/2N. For large N (tending to infinity), dq
becomes small (infinitesimal) and q takes on an approxi-
mately continuous range of values. See also: Diffusion
Theory

Probability density of allele frequency

Making use of a continuous approximation simplifies the
study of the probability distribution of allele frequencies. If
f(q|t) is defined to be the probability density function (pdf)
of q after t generations of reproduction, the probability that
q is in the interval (a, b) isZ b

a

f ðqjtÞdq

Properties of the process of population allele frequency
change over time, such as the expected (or average) popu-
lation allele frequency at time t, the variance of allele fre-
quencies across replicate populations, etc., can be studied
by evaluating statistical moments of the pdf of population
allele frequencies.

Stationary Allele Frequency
Distributions

Stationary distributions

If a stationary allele frequencydistribution exists, the pdf of
the stationary allele frequency distribution can be obtained
by taking the limit

jðqÞ¼ lim
t!1

f ðqjtÞ

Wright (1969) gives analytical expressions for the sta-
tionary distribution of allele frequencies under several
models of mutation, migration and selection. Here, results
for the allele frequency distributionundermutationmodels
are briefly outlined with finite numbers of possible alleles,
and models of subdivided populations with symmetrical
migration patterns. The models presented here assume
neutrality of alleles.

Two alleles: mutation or migration

Two-state mutation model

A simple model of mutation considered by Wright (1931)
assumes that only two alleles are possible at a locus, a and
A. Themutation process is reversible with amutation rate v
from allele a to A and rate u from A to a. Let q be the
frequency of allele a. Then the stationary pdf of q is

fðqÞ¼ Gð4Nuþ 4NvÞ
Gð4NuÞGð4NvÞ q

4Nu�1ð1� qÞ4Nv�1

where G denotes the gamma function. This is a beta
distribution with parameters a=4Nu and b=4Nv (see
Johnson et al., 1995). The expectation (mean) of the allele
frequency at stationarity is u/(u+v) and the variance
(across populations that are at stationarity and experi-
encing identical evolutionary pressures) is uv/[(u+v)2

(4N(u+v)+1)].

Wright island model

A simple model of migration, the so-called ‘Wright island
model’, assumes that a fraction m of the alleles in a popu-
lation are replaced by migrant alleles in each generation.
The allele frequency among migrants is assumed to be
constant, �q. The stationary pdf of allele frequency in the
population is

fðqÞ¼ Gð4NmÞ
Gð4Nm�qÞG½4Nmð1� �qÞ� q

4Nm�q�1ð1� qÞ4Nmð1�qÞ�1

This is a beta distribution with parameters

a¼ 4Nm�q b¼ 4Nmð1� �qÞ

The mean allele frequency at stationarity is �q.

Multiple alleles: mutation or migration

Mutation model (k alleles)

A general formula is available for the stationary allele
frequency distribution only under a (quite unrealistic)
model of mutation in which all alleles mutate to allele j
with the same rate vj. This has been called the parent
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independent mutation model. In that case, the stationary
joint pdf of allele frequencies is

fðq1; q2; . . . qkÞ¼G 4N
Xk
i�1

vi

 !Yk
j�1

q
4Nvj�1
j

Gð4NvjÞ

where qj is the frequency of allele j.

Wright island model (k alleles)

The Wright island model can be extended to k alleles (see
Wright, 1969). If qj is defined to be the frequency of the jth
allele on an island, and �qj to be the frequency of the allele
among migrants, the stationary joint pdf of allele fre-
quencies is

fðq1; q2; . . . qkÞ¼Gð4NmÞ
Yk
j¼ 1

q
4Nm�qj�1
j

Gð4Nm�qjÞ

The above distributions are special cases of a general
distributionknownas theDirichlet distribution (Kotz et al.,
2000), which arises in many population genetic models.

Sampling Distributions of Alleles

The stationary distributions of allele frequencies outlined
earlier apply to a population. Experimental studies of
natural populations usually characterise the number of
copies of each distinct allele observed in a sample of n
diploid individuals (2n copies in total). This is referred to as
the sampling distribution of alleles and can be used to
estimate parameters of population genetic models. For
example, one can derive a maximum-likelihood estimator
of 4Nm under the Wright island model (Rannala and
Hartigan, 1996). Assuming that individuals are sampled
at random (with respect to genotype), and that genotypes
are in Hardy–Weinberg equilibrium in a population, the
probability distribution of allelic sample configurations
(conditional on the allele frequencies) is either binomial
(two alleles) or multinomial (more than two alleles)

Prðx1; x2; . . . xkjqÞ¼
2n

x1; x2; . . . ; xk

 !Yk
j¼ 1

q
xj
j

where q=qj is a vector of the population allele frequencies,
qj the frequency of allele j and xj the number of copies of
allele j in the sample. If the population is at equilibrium,
and the stationary allele frequency distribution is specified
under a particular model, the sampling distribution is

Prðx1; x2; . . . xkÞ¼
Z

Prðx1; x2; . . . xkjqÞfðqÞdq

where integration is over the multidimensional simplex
of population allele frequencies. For most models of
finite numbers of alleles that havebeen a subject of analysis,
the sampling distribution is a multinomial Dirichlet

distribution (Johnson et al., 1997). In the special case of two
alleles, this simplifies to the beta binomial distribution.

Mutation model (k alleles)

For the k-allele symmetrical mutation model, the station-
ary sampling distribution of alleles is

Prðx1; x2; . . . xkÞ¼ Gð2nþ 1ÞG 4N
Xk
i¼ 1

vi

 !" #

� G 2nþ 4N
Xk
i¼ 1

vi

 !" #�1

�
Yk
j¼ 1

Gðxj þ 4NvjÞ
Gðxj þ 1ÞGð4NvjÞ

Wright island model (k alleles)

For the island model, the stationary sampling distribution
of alleles is

Prðx1; x2; . . . xkÞ¼
Gð2nþ 1ÞGð4NmÞ
Gð2nþ 4NmÞ

�
Yk
j¼ 1

Gðxj þ 4Nm�qjÞ
Gðxj þ 1ÞGð4Nm�qjÞ

Discussion

Stationary allele frequency distributions have been derived
for a broad range of models, in particular models with
selection andk alleles parent independentmutation (see the
introduction to Buzbas and Joyce, 2009). Here the author
has outlined results for the stationary frequency distri-
butions and sampling distributions of several of the sim-
plest models with migration, genetic drift and mutation.
More recently, simulation-based methods have been
extensively used to study frequency distributions of alleles
under more complex models for which analytical solutions
are not available. Modern approaches often focus on
nonstationary sampling distributions using the coalescent
process which models the genetic evolution of a sample of
chromosomes backwards through time, rather than pro-
jecting frequencies forward in time as is done in the classical
Wright–Fisher–Markov process or the diffusion approxi-
mation to this process. See also: Coalescent Theory;
Evolution: Neutralist View; Mutational Change in Evo-
lution; Population Genetics: Overview
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